

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Faculty of Science

Chemistry Department

Synthesis and characterization of some novel transition metal complexes and studying their biological efficiency

Thesis Submitted by

Mina Ezzat sidqi Fahmy

B.Sc. (Chemistry) 2017

For the requirement of M.Sc. Degree of Science in Chemistry

Advisors:

Prof. Dr. Ayman Ahmed Abdel Aziz

Professor of Inorganic Chemistry, Faculty of Science,

Ain Shams University

Dr. Amir Ezzat Aboelhassn

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

Dr. Mostafa Abd-Ella Sayed

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

To

Department of Chemistry
Faculty of Science, Ain Shams University

Faculty of Science

Chemistry Department

Synthesis and characterization of some novel transition metal complexes and studying their biological efficiency

By

Mina Ezzat sidqi Fahmy

Thesis Advisors

Approved

Prof. Dr. Ayman Ahmed Abdel Aziz

Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University

Dr. Amir Ezzat Aboelhassn

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

Dr. Mostafa Abd-Ella Sayed

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

> Head of Chemistry Department Prof. Dr. Ayman Ayoub Abdel-Shafi

Faculty of Science Chemistry Department

Student Name: Mina Ezzat sidqi Fahmy

Scientific Degree: M.Sc.

Faculty Name: Faculty of Science – Ain Shams University

Graduation Year: 2017

Granting Year: 2022

Faculty of Science

Chemistry Department

Acknowledgment

First and foremost, I would like to thank God for giving me the opportunity and well-power to accomplish this work.

Foremost, I would like to express my thanks to Prof. Dr. Ayman Ahmed Abdel Aziz, for giving me the chance to be one of his students and for his generous advices, valuable discussions and his guidance helped me in all the time of research and writing of this thesis, Dr. Amir Ezzat Aboelhassn, who helped me greatly, useful guidance effective contributions, and gave me the confidence to express my ideas freely, Dr. Mostafa Abd-Ella Sayed, for the continuous support of my M.Sc.Study and research, for his patience, motivation, enthusiasm, and immense knowledge.

Last but not the least, I would like to thank my family: my parents and my wife, for supporting me spiritually throughout my life.

Mína Ezzat

Summary

Details of the studies on the synthesis, spectral characterization and analytical applications of some new transition metal complexes of the Schiff bases derived from 2-hydroxy-1-napthaldehyde are presented in this thesis Schiff-bases are important material for inorganic chemists as these are widely used in medicinal inorganic chemistry due to their diverse biological, pharmacological, antitumor activities. Recently, there has been tremendous interest in studies related to the interaction of transition metal ions with nucleic acid because of their relevance in the development of new reagents for biotechnology and medicine. The thesis is divided to three chapters and pronounced as follows:

Chapter I: Introduction and Literature Review

In chapter I, involves a general introduction to Schiff bases and their transition metal complexes. Brief discussion about the applications of Schiff bases and their metal complexes in various field, importance of Schiff base transition metal complexes, antioxidants and its biological importance are included in this chapter, preparation of Schiff base and its complexes derived from previous studies of some research projects, a literature review on detection and determination Al³⁺ ions by using Schiff base as chemo sensors were discussed.

Chapter II: Experimental Work

In chapter II, is broadly divided into two sections. Part A provides details of the reagents used and various analytical and chemical techniques employed in the characterization and biological studies of Page | i

ligands and its complexes. Part B gives the details of the preparation and spectral characterization of new Schiff base. Schiff base have been synthesized by the condensation of 2-hydroxy-1-napthaldehyde with 4,5-dimethyl-1,2-pheneylenediamine.

Chapter III: Results and discussion

This chapter is divided to two parts as follows

Part 1, New complexes of Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were prepared from tetradentate Schiff base ligand (H₂L), derived from condensation of 4,5-dimethyl-1,2-phenylenediamine and 2hydroxy-1-naphthaldehyde. The Schiff base ligand 1,1'-((1E,1'E)-((4,5dimethyl-1,2-phenylene)bis(azaneylylidene))bis(methaneylylidene))bis(naphthalen-2-ol) (H₂L) and its ligand complexes were characterized by using elemental microanalysis, conductometric measurements, magnetic susceptibility and spectroscopic studies (UV-Vis, mass spectral analysis, FT-IR, ¹H-NMR, ¹³C-NMR, TGA and ESR. To investigate the biological significance of Schiff base ligand and its new complexes. Furthermore, the DNA binding study was performed on Calf-thymus DNA by absorbance, fluorescence, viscosity and thermal denaturation measurement. Notably, the manganese(II) and copper(II) complexes have strong DNA binding interactions compared to other complexes. Further, the newly synthesized ligand and its metal complexes were tested for their in vitro anti-proliferative activity against two types of human cancer cell lines (MCF-7 and HepG-2). The complexes displayed moderate activity compared to the reference drug cis-platin.

Part 2, describes fluorescent probe based on the combination of 4,5dimethyl-1,2-pheneylenediamine and 2-hydroxy-1-naphthaldehyde (PAMN) for the recognition of Al3+ was synthesized and extensively characterized using various elemental analysis, FT-IR, UV-visible, ESI-MS, C,H,N, magnetic moment, Job's plot, ¹H-NMR and ¹³C-NMR spectroscopic studies. It was found to be highly selective and sensitive sensor for Al³⁺ in DMSO-HEPES solution (1:1, v/v, pH= 7.20) in fluorescence spectroscopy. with the gradual addition of Al3+ ions, the emission band exhibited a red shift (\sim 539 to \sim 547 nm). PAMN coordinated with Al³⁺ in [1:1] stoichiometry with an association-constant of $2.18 \times 10^5 \,\mathrm{M}^{-1}$ and the detection limit was calculated to be 7.05×10^{-9} M. The binding mode of interaction with Al3+ and the chelate complex formation was supported with the help of a ¹H-NMR spectroscopy titration, ESI-MS and by theoretical studies. The energies of both HOMO and LUMO for PAMN and PAMN-Al complex were estimated by DFT calculations to elucidate the configuration of the PAMN-Al complex. The live cell imaging study indicated that PAMN is highly efficient in the detection of exogenous Al3+ in living cell.

ABSTRACT

New complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were prepared from tetradentate Schiff base ligand (H₂L), derived from condensation of 4,5-dimethyl-1,2-phenylenediamine and 2hydroxy-1-naphthaldehyde. The Schiff base ligand (H₂L) and its complexes were characterized by using elemental microanalysis, conductometric magnetic measurements. susceptibility spectroscopic studies (UV-Vis, mass spectral analysis, FT-IR, ¹H-NMR, ¹³C-NMR, TGA and ESR. To investigate the biological significance of Schiff base ligand and its new complexes. Furthermore, the DNA binding study was performed on Calf-thymus DNA by absorbance, fluorescence, viscosity and thermal denaturation measurement. Further, the newly synthesized ligand and its metal complexes were tested for their in vitro antiproliferative activity against two types of human cancer cell lines (MCF-7 and HepG-2).

Schiff base ligand (H₂L) for aluminium recognition has been conveniently synthesized and characterized. H₂L exhibited a weak fluorescence and upon addition of aluminium, it exhibited pronounced enhancement against the background of other metal ions. The recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and chelation-enhanced fluorescence (CHEF) effect. H₂L coordinates Al³⁺ in 1:1 stoichiometry with association constant of with Al³⁺ is found to be $2.18 \times 10^5 \, \text{M}^{-1}$. H₂L displays good linear relationship with Al³⁺ in extremely low concentrations with LOD of $7.05 \times 10^{-9} \, \text{M}$. In addition, the living Hela

cell imaging demonstrates that the probe has good cell membrane permeability and shows a great potential for tracing intracellular Al³⁺ ions through fluorescence imaging technology.

KEYWORDS: Schiff-bases; Metal complex; N₂O₂ Schiff base; Chelates; DNA binding; Cytotoxicity; DNA-binding; Cytotoxicity; Fluorescent probe ESIPT; CHEF; Aluminum ions; Cell imaging.

Contents

Title		Page
List of Tables		ix
List of Schemes		Х
List of Figures		Xi
List of Abbreviation		ХХ
	Chapter I General introduction	1
	Chapter One: Introduction and Literature review	1
1.1.	Schiff bases	1
1.1.1.	Types of Schiff bases based on chelating property	2
1.1.2.	Importance of Schiff bases	3
1.1.3.	Biological importance of Schiff base	4
1.1.4.	Applications of Schiff bases and their metal complexes	5
1.1.4.1.	Application in modern technologies	6
1.1.4.2.	Application in synthesis and chemical analysis	7
1.1.4.3.	Applications in analytical chemistry	7
1.1.4.4.	Photometric method of analysis	8
1.1.4.5.	Fluorometric analysis	9
1.1.4.6.	Potentiometric sensors	9
1.1.4.7.	Schiff base as solvent extractant	10
1.1.4.8.	Application in HPLC	10
1.1.5.	Schiff base metal complexes	11
1.1.6.	Schiff base as chemo sensor for AL ³⁺	38
Chapter II Experimental		
2.1.	Materials and Methods	51
2.1.1.	Materials	51
2.1.2.	Physicochemical measurements	51
2.2.	Synthesis of 1,1'-((1E,1'E)-((4,5-dimethyl-1,2-phenylene)	53
	bis(azaneylylidene))bis(methaneylylidene))bis(naphthalen-2-ol)	
2.3.	General procedure for synthesis of complexes	53
2.4.	Biological applications	54
2.4.1.	Antimicrobial screening	54
2.4.2.	DPPH radical scavenging	55

2.4.3.	DNA binding studies	56
2.4.3.1.	UV-visible absorption spectral titration	56
2.4.3.2	EtBr competitive assay	57
2.4.3.3.	Viscosity measurements	58
2.4.3.4.	Thermal denaturation	59
2.4.4.	In vitro cytotoxicity investigations	59
2.4.4.1.	Cell treatment procedure	60
2.4.4.2.	MTT assay	60
2.5.	Determination of stoichiometry of complexes	61
	Chapter III Results and discussion	
	3.1.Part (1)	63
3.1.1.	IR spectral studies	65
3.1.2.	Determination of stoichiometry of complexes in solution	75
3.1.3.	Electron sprays ionization mass spectra (ESI MS)	79
3.1.4.	NMR spectra	84
3.1.5.	Electronic spectra and magnetic susceptibility studies	91
3.1.6.	ESR spectrum of Cu (II) complex	95
3.1.7.	Thermal analysis (TGA)	98
3.1.7.	Antibacterial activity	104
3.1.8.	DPPH scavenging radical activity	106
3.1.9.	In vitro DNA binding affinity studies	108
3.1.9.1.	UV- Visible spectroscopic titration	108
3.1.9.2.	Emission quenching studies	117
3.1.9.3.	Viscosity measurements	127
3.1.9.4.	Thermal denaturation	129
3.1.10.	In vitro antiproliferative activity	132
	3.2. Part (2)	137
3.2.1.	Spectroscopic responses of the PAMN probe	137
3.2.2.	Effect of pH	141
3.2.3.	Detection Limit	142
3.2.4.	Selectivity of sensor	144
<i>3.2.5.</i>	The response time and standing time	145
3.2.6.	Reversibility of sensor	146
3.2.7.	Binding model between PAMAN and AL3+	147
3.2.8.	FT-IR spectra of PAMN and PAMN-Al ³⁺	149
<i>3.2.9.</i>	ESI-mass spectra	151

3.2.10.	¹ H-NMR titration	153
3.2.11.	DFT calculations PAMN and Al ³⁺ -PAMN complex.	156
3.2.12.	Sensing mechanism speculation	157
3.2.13.	Comparison with previous works	158
3.2.14.	Fluorescent detection of aluminum ions in HeLa cells	162
3.2.14.1.	In vitro cytotoxicity assay	162
3.2.14.2.	In Vitro Bioimaging	164
3.2.15.	Conclusion	166
References		167
Arabic summery		ĺ