

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Effect of Vibratory Stimulation on Crouch Gait in Spastic Diplegic Children

By Hadya Mourice Ibrahim

M.Sc. in Physical Therapy Cairo University

Thesis

Submitted in Partial Fulfillment for the Requirements of Doctoral Degree in Physical Therapy

> Faculty of Physical Therapy Cairo University

Supervisors

Prof. Dr/Hoda Abdel Aziem El Talawy

Vice Dean of Educational and Student's Affairs and Prof. in the Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery Faculty of Physical Therapy- Cairo University

Dr/Hala Ibrahim Ahmed Kassem Hala Kasse

Ass. Prof. in the Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery Faculty of Physical Therapy- Cairo University

Acknowledgment

Above all and before all thanks to "GOD" for giving me the power, ability and patience to accomplish this work.

I wish to express my deepest sincere appreciation and gratitude to **Prof.Dr. Hoda Abdel-Aziem El-Talawy**, Vice Dean of Educational and Student's Affairs and Profesor in the Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery, Faculty of Physical Therapy, Cairo University, for her valuable supervision and kind advice throughout the whole work. She gave me a great deal of her valuable time and effort. Her precious remarks and continous guidance were very helpful and beneficial for me.

I'm greatly honored to express my deepest appreciation to **Dr. Hala Ibrahim Ahmed Kassem** Ass. Prof. in the Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery, Faculty of Physical Therapy, Cairo University, for her unfailing support and encouragement. She closely followed the preparation and conduction of this work and did not spared any effort in assisting me.

Also I would like to express my deepest thanks and gratitude to **Prof. Dr. Emam Hasan El Negmy** Chairman of the Department of Physical Therapy for Growth and Developmental Disorders in Children and its Surgery, Faculty of Physical Therapy, Cairo University, for his valuable comments, help and motivation.

I feel deeply thankfull to all of those who helped me to finish this work especially the physical therapists working in the Physical Therapy Department of the Specialized Pediatric Hospital- Cairo University Hospitals. I'am also thankfull to the patients and their parents who accepted to participate in this work.

Hadya Mourice

2002

To My Parents,
My Husband and
My Son Fady & My Daughter Mony.
For their patience and support during conduction of this work

Effect of vibratory stimulation on crouch gait in spastic diplegic children/ *HadyaMouriceIbrahim*; Supervisors: Prof.Dr. Hoda Abdel Aziem El Talawy – Dr. Hala Ibrahim Ahmed Kassem. Faculty of Physical Therapy - Cairo University, 2002. Doctoral Thesis.

ABSTRACT

The aim of this study was to evaluate the effect of high and low frequency vibratory stimulation and a specially designed exercise program on crouch gait in spastic diplegic cerebral palsied children. Sixty diplegic children (35 males and 25 females), ranging in age from three to six years old participated in this study. The study sample was classified randomly into two study groups and one control group. The first study group received a program of high frequency vibratory stimulation in addition to a specially designed exercise program. The second study group received a program of low frequency vibratory stimulation in addition to the specially designed exercise program given to the first group, while the control group received the specially designed exercise program only. The angles of hip, knee and ankle joints and the temporal distance parameters of gait were evaluated before and after three months of application of different treatment programs. The results of the study revealed highly significant improvement in all measuring variables of the first and second study groups(except the step width), while no significant improvement was observed in the results of the control group. Improvement in the two study groups may be attributed to the effect of vibratory stimulation program on improving muscle function.

Key words: CP- Vibratory Stimulation- Crouch Gait- Gait Analysis.

List of Abbreviation

cm : Centimeter.

CNS : Central nervous system.

Fig. : Figure.

HS: Highly significant.

Hz: Hertz

Lt. : Left

MD : Mean difference.

MS : Mean squares

m / sec. : Meter per second.

MVIC: Maximum voluntary contraction.

NDT: Neuro developmental treatment.

NS: Non significant.

Rt. : Right

S : Significant.

SD : Standard deviation.

SS : Sum of squares

step / m.: Step per minute.

TVR : Tonic vibratory stimulation.

X : Mean.

List of Tables

Table	Page
Table (1): Age distribution in both study groups and the	11
control group.	
Table (2): Sex distribution among the three groups.	116
Table (3): Comparison of the mean values of hip, knee and	120
ankle joints angles (degree) during initial contact	
pre and post treatment for the first study group.	
Table (4): Comparison of the mean values of hip, knee and	124
ankle joints angles (degree) during mid stance	
pre and post treatment for the first study group.	
Table (5): Comparison of the mean values of hip, knee	128
and ankle joints angles (degree) during heel	
off pre and post treatment for the first	
study group.	
Table (6): Comparison of the mean values of hip, knee	132
and ankle joints angles (degree) during initial	
contact pre and post treatment for the second	
study group.	
Table (7): Comparison of the mean values of hip, knee	137
and ankle joints angles (degree) during mid	
stance pre and post treatment for the second	
study group.	

Table (8): Comparison of the mean values of hip, knee	140
and ankle joints angles (degree) during heel off	
pre and post treatment for the second study	
group.	
Table (9): Comparison of the mean values of hip, knee	144
and ankle joints angles (degree) during initial	
contact pre and post treatment for the control	
group.	
Table (10): Comparison of the mean values of hip, knee	148
and ankle joints angles (degree) during mid	
stance pre and post treatment for the control	
group.	
Table (11): Comparison of the mean values of hip, knee	152
and ankle joints angles (degree) during heel	
off pre and post treatment for the control	
group.	
Γable (12): Comparison of the mean values of step length,	155
step width velocity and cadence pre and post	
treatment for the first study group.	
Table (13): Comparison of the mean values of step length,	159
step width velocity and cadence pre and post	
treatment for the second study group.	

Table (14): Comparison of the mean values of step	163
length, step width, velocity and cadence	
pre and post treatment for the control group.	
Table (15): Comparison of the mean values of hip,	168
knee and ankle joints angles (degree) during	
initial contact post treatment for the 1st and 2nd	
study groups.	
Table (16): Comparison of the mean values of hip, knee	172
and ankle joints angles (degree) during	
mid stance post treatment for the 1st and 2nd	
study groups.	
Table (17): Comparisonal of the mean values of hip, knee	176
and ankle joints angles (degree) during	*
heel off post treatment for the 1st and 2nd study	
groups.	
Table (18): Comparison of the mean values of step length,	179
step width, velocity and cadence post	
treatment for the 1st and 2nd study groups.	
Table(19): Percentages of improvement of hip, knee	183
and ankle joints angles during initial contact	
for the three groups at the end of treatment.	•