

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Failure Mode and Effect Analysis for Three Dimensional Radiotherapy at Ain Shams University Hospital

AThesis

Submitted for partial fulfilment of Master degree in Clinical Oncology and Nuclear Medicine

> By Gehad Sobhy Muhammad El-Benbawy M.B.B.,CH, 2016

> > Under Supervisor of

Prof. Dr. Iman Aly Sharawy

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Khalid Nagib Abdel Hakim

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Ghada Refaat Meckawy

Lecturer of Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2022

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work.

My deepest gratitude to **Prof. Dr. Iman Aly Sharawy**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Hatem Mohamed Abdalla**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his meticulous supervision, and his patience in reviewing and correcting this work.

I must express my deepest thanks to **Dr. Khalid Nagib Abdel Hakim,** Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for guiding me throughout this work and for granting me much of his time. I greatly appreciate his efforts.

I can't forget to thank with all appreciation **Dr. Ghada Refaat Meckawy,** Lecturer of Oncology and Nuclear Medicine, Faculty of Medicine,
Ain Shams University, whom tirelessly and freely gave comments on various drafts of this piece of work. She really provided me a great support.

Special thanks to my **Parents** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

🖎 Gehad Sobhy Muhammad El-Benbawy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Three-dimensional Radiotherapy	4
3-D Radiotherapy process	13
Risk Management	40
FMEA (Failure Modes and Effect Analysis)56
Methodology	70
Results	103
Discussion	142
Summary	151
Conclusions	157
References	159
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ACR : American College of Radiology

ASTRO: American Society for Therapeutic Radiology and Oncology

AAPM : American Association of Physicists in Medicine

BEVs : Beam's eye views

CNS : Central Nervous System

CRT : Conformal radiation therapy

CT : Computer tomography

CTV : Clinical target volume

D : Lack of detectability

DRR : Digitally reconstructed radiograph.

DRR : Digitally reconstructed radiographs

DVH : Dose Volume Histogram

EPID : Electronic Portal Imaging Device

ESTRO : European Society for Therapeutic Radiology and Oncology

EU BSS : European Union Basic Safety Standards

FMEA : Failure Modes and Effects Analysis

FMECA: Failure mode effects and criticality analysis

FTA : Fault tree analysis

GTV : Gross tumour volume

HACCP: Hazard analysis and critical control points

HFMEA: Healthcare Failure Modes and Effects Analysis

IAEA : International Atomic Energy Agency

ICRP : International Commission on Radiological Protection

ICRU: International Commission on Radiological Units

IGRT : Image Guided Radiotherapy

ILS: Incident learning system

IM : Internal margin

IMRT : Intensity modulation radiation therapy

ITV : Internal Target Volume

IVD : In-vivo dosimetry

MLC : Multi-leaf collimator

MPRs : Multi-planar reconstructions

MRI : Magnetic resonance imaging

MUs : Monitor units

NTCP : Normal tissue complication probability

NTCP : Normal tissue complication probability

O : Occurrence

OARs : Organs at risk

OD : Optical density

PET : Positron emission tomography

PRV : Planning organ at risk volume

PTV : Planning target volume

QM : Quality management

RCA : Root cause analysis

ROSIS : Radiation Oncology Safety Information System

RPN: Risk Priority Number

RT : Radiotherapy

RT : Radiation Technician.

RTPS : Radiation treatment planning system

RTT : Radiation therapy technologist

RVS : Record and verify system

S : Severity

SAD : Source axis distance

SAFRON: Safety in Radiation Oncology database

SBRT : Stereotactic body radiation therapy

SPECT : Single photon emission computed tomography

SSD : Source skin distance

TCP: Tumour control probability

MLC : Multi-leaf collimator

TG100 : Task group 100

TLD's: Thermo-luminescent dosimeters

TPS: Treatment Planning System

TV: Treated volume

3-D CRT: Three dimensional conformal radiotherapy

3-D : Three dimensional radiotherapy

List of Tables

Table No.	Title	Page No.
Table (1):	Past and Present in Radiotherapy	5
Table (2):	Classification of conformal the according to the methodology and associated with each step of procedure	tools the
Table (3):	A collection of recomme radiotherapy risk management reterminology.	elated
Table (4):	Key staff functions in clinical radii therapy have been summarized in following table	n the
Table (5):	Descriptions of the O, S and D v used in the TG-100 FMEA	
Table (6):	Terminology relating to severity as in the TG-100 FMEA	
Table (7):	The basis for assigning these score their numerical values according to	
Table (8):	FMEA Questionnaire for Head department	
Table (9):	FMEA Questionnaire for Once Staff	
Table (10):	FMEA Questionnaire for Assilecturers and residents	
Table (11):	FMEA Questionnaire for physicists	s 89
Table (12):	FMEA Questionnaire for Technicia	ns 94

Table (13):	FMEA Questionnaire for Engineers 98
Table (14):	Major processes of 3-D Radiotherapy, potential causes of failure, severity scoring, Risk priority number (RPN) and suggested preventive measures for each failure mode
Table (15):	Major processes of 3-D Radiotherapy, potential causes of failure (after affiliation), severity, occurrence & lack of Detectability scoring, Risk priority number (RPN), suggested preventive measures for each failure mode (after affiliation) and risk reassessment
Table (16):	Personnel Requirements For Clinical Radiation Therapy

List of Figures

Figure N	o. Title	Page No.
Figure (1):	Radiotherapy from the past to the pres	sent4
Figure (2):	Flow chart illustrating the steps is EBRT process, starting with diag and ending with treatment delivery.	gnosis
Figure (3):	Schematic representation of different possibilities to combine uncertaint define the PTV from the GTV	ies to
Figure (4):	Illustration of typical data exch between the RVS and other piece equipment in a modern radioth department	ces of nerapy
Figure (5):	Simplified illustration of the relation of the main procedural concepts a in risk management of 3D radiothers	pplied
Figure (6):	High-level Flow chart illustrating steps in 3D radiotherapy process	3
Figure (7):	Detailed Process Map of Dimensional Radiotherapy at Ain S University Hospital	Shams
Figure (8):	Affinity Diagram for suggestive measures for 3D radiother process at Ain Shams University Ho	nerapy
Figure (9):	Suggested process Map of Dimensional Radiotherapy at Ain S University Hospital	Shams

Introduction

he increasing complexity of modern radiation therapy planning and delivery challenges traditional prescriptive quality management (QM) methods, such as many of those included in guidelines published by organizations such as the AAPM, ASTRO, ACR, ESTRO, and IAEA. These prescriptive guidelines have traditionally focused on monitoring all aspects of the functional performance of radiotherapy (RT) equipment by comparing parameters against tolerances set at strict but achievable values. Many errors that occur in radiation oncology are not due to failures in devices and software; rather they are failures in workflow and process. A major source of quality and safety impairment arises from weakness or variability in radiotherapy processes. Whereas, for example, there are a limited number of linear accelerator designs, there is very little standardization of processes between radiotherapy clinics. The wide variability in processes requires a much higher degree of customization that has to be carried out by those with intimate knowledge of the processes themselves. A structured analyzing clinical methodology for processes and developing clinic- and site-specific quality management programs that more effectively and efficiently address work practices in individual clinics is needed (*Hug et al.*, 2016).

Moreover, radiotherapy technology advancements have led to an increase in the use of computers and associated electronic processes. However, the 2009 International Commission on Radiological Protection (ICRP) Report 112 indicates that new types of incidents are occurring due to increased sophistication of treatment processes and the omnipresence of computers with increasingly complicated software (*Ortiz-Lopez et al.*, 2009).

The report highlights the need to not only learn from incidents but also to continuously and proactively anticipate potential errors and likelihood of their occurrence. The key advantage of using a proactive risk assessment is in identifying and anticipating potential errors and taking action before a radiation incident occurs. Failure Modes and Effects Analysis (FMEA) is a structured and logical analysis of a process to identify steps which are associated with the highest risk (*Huq et al.*, 2016).

The benefits and feasibility of FMEA for radiotherapy intensity modulation radiation therapy (IMRT), stereotactic body radiation therapy (SBRT) and brachytherapy practices have previously been described. Radiotherapy process mapping and FMEA will assume more central roles in optimization of clinical processes to produce maximum safety and quality of patient care (*Mayadev et al.*, 2015).