

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Nalbuphin as an Adjuvant to Levobupivacaine in Caudal Analgesia in Children

Thesis

Submitted for Partial Fulfillment of Master Degree in Anesthesiology

Under supervision of

Prof. Mostafa Kamel Reiad

Professor of Anesthesiology Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Sanaa Mohamed Elfawal

Assistant Professor of Anesthesiology Faculty of Medicine - Ain Shams University

Dr. Rehab Abdel Fattah Abdel Razik

Lecturer of Anesthesiology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mostafa Kamel Reiad**, Professor of Anesthesiology, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. Sanaa Mohamed Elfawal, Assistant Professor of Anesthesiology, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Rehab Abdel Fattah**Abdel Razik, Lecturer of Anesthesiology, Faculty of Medicine

- Ain Shams University, for her great help, active participation and guidance.

Mohamed Soliman

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Caudal Canal Block	4
Pharmacology & Toxicity of Local Anesthetics Pediatrics	
Pharmacology of Nalbuphine	35
Patients and Methods	41
Results	50
Discussion	63
Conclusion	71
Summary	72
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
AAG	. Alpha-1-acid glycoprotein
ASA	. American Society of Anesthesiologists
CBC	. Complete blood count
C1	. Clearance
CNS	. Central nervous system
CYP	. Cytochrome
ECG	. Electrocardiography
ETT	. Endotracheal tube
HR	. Heart rate
INR	International normalized ratio
LAST	Local anethetic systemic toxicity
MAC	Minimum Alveolar Concentration
MAP	. Mean arterial pressure
PABA	. Para-amino benzoic acid
PCEA	. Patient-controlled epidural analgesia
PDPH	. Post dural puncture headache
PONV	. Postoperative nausea and vomiting
PT	Prothrombin time
PTT	Partial thromboplastin time
SPO2	Oxygen Saturation
TFAR	. Time to first analgesic requirement
VAS	. Visual analogue scale
VDss	. Higher volumes of distribution at steady state

List of Tables

Table No.	Title	Page	No.
Table (1):	Physicochemical properties of clused local anesthetics.		16
Table (2):	Pharmacokinetic parameters of clusedlocal anesthetics.		
Table (3):	Maximum recommended doses approximate duration of acti commonly used local anesthetic ager	on of	22
Table (4):	Dosages of the commonly used anesthetics in children for peripherablocks	al nerve	22
Table (5):	Respiratory Depressant Effects of Antagonists Compared with Morphis	_	38
Table (6):	FLACC behavioral pain assessment	scale	43
Table (7):	Comparison between the two groups regarding demographic characteristic data	and	51
Table (8):	Comparison between the two groups regarding heart rate intraop and postoperative follow-up.	erative	53
Table (9):	Comparison between the two groups regarding oxygen sat intraoperative and postoperative follows:	uration	55
Table (10):	Comparison between the two groups regarding mean arterial pressure intraoperative and postop follow-up.	blood erative	58
Table (11):	Comparison between the two groups regarding FLACC scale		

List of Tables Cont...

Table No.	Title	Page No.
Table (12):	Comparison between the groups regarding time to requirement (hours) and total of rescue analgesia.	first analgesic
Table (13):	Comparison between the groups regarding occomplications.	currence of

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomy of human sacra	5
Figure (2):	Caudal block, lateral position	9
Figure (3):	Technique of needle introduction	10
Figure (4):	Vascular complication of caudal block	13
Figure (5):	General structure of local anaethetic	15
Figure (6):	Local anesthetic movement equilibration of local anesthetic across the nerve membrane and in sodium channel	forms nto the
Figure (7):	Chemical structure of Nalbuphine	35
Figure (8):	Mean heart rate intraoperative postoperative in the two studied grou	
Figure (9):	Mean oxygen saturation intraoperation postoperative in the two studied grounds	
Figure (10):	Mean arterial blood pressure intraop and postoperative in the two studied	

Introduction

Various multimodal technniques have been designed for pediatric pain relief. These include both systemic and regional analgesia. The most commonly used regional technique is caudal epidural block (Xiang et al., 2013).

Caudal anethesia (CA) is the single most important pediatric regional anaethetic technique. The technique is relatively easy to learn, has a remarkable safety record and can be used for a large variety of procedures (Jöhr and Berger, 2012).

In children, CA is most effectively used as adjunct to general anesthesia and has an opioid-sparing effect, permitting faster and smoother emergence from anesthesia (O'Raux et al., 2010).

A successful caudal anesthetic blockade affords the anesthesiologist the opportunity to reduce intraoperative use of volatile anesthetic agent and to use a narcotic-sparing approach that ultimately may benefit the patient while providing a better postoperative course with less nausea and vomiting (Mukherji et al., 2011).

Prolongation of anesthesia can be achieved by adding various adjuvants, such as opioids like fentanyl and nonopioids like, dexmedetomoidine, ketamine, midazolam,

clonoidine with varying degrees of success (Sanwatsarkar and kapur et al., 2017).

Nalbuphine can be added in caudal analgesia and provide an increase in the efficacy and the duration of postoperative analgesia (Abdallah et al., 2019).

AIM OF THE WORK

To compare the effects of plain levobupivacaine 0.25% versus levobupivacaine 0.25% plus nalbuphine 0.1 mg/kg single-shot caudal epidural for postoperative pain relief in children undergoing hypospadius repair surgeries.

Chapter 1

CAUDAL CANAL BLOCK

Caudal Epidural Block:

Caudal anesthesia has been used for many years and is the easiest and safest approach to the epidural space. When correctly performed there is little danger of either the spinal cord or dura being damaged (*Chen et al.*, 2004).

Applied Anatomy:

The caudal (sacral) canal extends from the upper border of sacral bone (in relation to lumbar epidural space) to the sacral hiatus. Whole of this canal is enclosed in sacral bone.

Sacrum:

The five sacral vertebrae unite to form sacrum. The anterior surface of sacrum has four paired openings for the exit of anterior rami of sacral nerves (*figure 1*).

The posterior surface is convex & rough in nature because of fusion of vertebral elements. The posterior surface has four pairs of foramina for escape of posterior rami of sacral nerves. The laminae of fifth sacral vertebra (sometimes fourth also) fails to fuse; the resultant gap is called the sacral hiatus. The sacral hiatus is covered by sacrococcygeal membrane which is an extension of the ligamentumflavum and is pierced