

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

EXPLORING THE CLINICAL SIGNIFICANCE OF SERUM ANGIOPOIETIN-2 IN BREAST CANCER PATIENTS

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

Presented by

Seham Kamal Mohamed

M.B., B.Ch. Faculty of Medicine- Alazher University

Supervised by

Professor. Abeer Ibrahim Abd Elmagid

Professor of Clinical Pathology
Faculty of Medicine, Ain Shams University

Professor. Hala Abdel Al Ahmed

Professor of Clinical Pathology
Faculty of Medicine, Ain Shams University

Dr. Wessam El-Sayed Saad

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

في استكشاف الاهمية الاكلينيكية للا نجيوبويتين−٢ الدم لدى مرضى سرطان الثدي

رسالة

توطئة للحصول على درجة الماجستير في الباثولوجيا الاكلينيكية معدمة من

🗌 سهام كمال محمد موسى/الطبيبة

بكالوريوس الطب والجراحة - كلية الطب- جامعة الأزهر

تحت إشراف

الأستاذ الدكتور/ عبيسرإبراهيسم عبك المجيسك

أستاذ الباثولوجيا الاكلينيكية

كلية الطب- جامعة عين شمس

الأستاذ الدكتور / هالة عبد العسال أحمسك

أستاذ الباثولوجيا الاكلينيكية

كلية الطب- جامعة عين شمس

د/ وسام السيد سعد

أستاذ مساعد الباثولوجيا الإكلينيكية

كلية الطب- جامعة عين شمس

كلية الطب

جامعة عين شمس

۲.۲.

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Abeer Ibrahim Abd Elmagid**, Professor of Clinical Pathology, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I find no words by which I can express my deepest thanks and appreciation to **Prof. Hala Abdel Al Ahmed,** Professor of Clinical Pathology, Ain Shams University, for greet support, valuable supervision and continuous encouragement throughout the whole work.

I wish to express my great thanks and gratitude to **Dr.**Wessam El-Sayed Saad, Assistant Professor of Clinical Pathology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family and my colleagues for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

	Title Pag	ge
•	LIST OF ABBREVIATIONS	i
•	LIST OF TABLES	iii
•	LIST OF FIGURES	iv
•	INTRODCTION	1
•	AIM OF THE WORK	3
•	REVIEW OF LITERATURE	
	CHAPTER 1: BREAST CANCER	4
	A- Epidemiolog	4
	B- Risk Factors Associated with Breast	
	Cancer	4
	C- Classification of Breast Cancer	.12
	D- Diagnosis of Breast Cancer	16
	CHAPTER 2: ANGIOPOIETIN-2	26
	A-Angiopoietin Family	26
	B-Angiopoietin-2 Structure	26
	C-Angiopoietin-2 Storage	27
	D-Angiopoietin Receptors	27
	E-Mode of Action of Angiopoietin-2	31
	F-Physiological Effects of the	
	Angiopoietin-2	. 34

EList of Contents

	G-Pathological	Effects	of	the	
	Angiopoietin-	2			37
	H-Clinical Utility	of Angiopo	ietin – 2		41
	I-Methods of Assay	of Angiopo	ietin-2		43
•	SUBJECTS AND METH	HODS			.47
•	RESULTS				.63
•	DISCUSSION				.73
•	SUMMARY AND CON	CLUSION			.80
•	RECOMMENDATIOS .				.83
•	REFERENCES				.84
•	ARABIC SUMMARY				

LIST OF ABBREVIATIONS

ANG : Angiopoietin

ATM : Ataxia telangiectasia mutated gene

AUC : Area under curve BRCA : Breast cancer gene CA : Cancer antigen

:

CEA : Carcino embryonic antigen CT : Computed tomography ECs :Endothelial cells

Eff: Efficacy

EGF : Endothelial growth factor

ELISA : Linked immunosorbent assay-enzyme

ER : Estrogen receptor **FAK** : Focal adhesion kinase

FN : False negative

FOXO1 : Forkhed box protein 1

FP : False positive

HER2/neu: Human epidermal growth factor receptor 2/ neuro-

glioblastoma

HIF : Hypoxia-inducible factor

ICAM1 : Intercellular adhesion molecule 1

Ig : Immunoglobulin

IHC : ImmunohistochemistryIQR : Interquartile range

JAM : Jancutinoal adhesion molecule

KDR : Kinase domain regionMAb : mono clonal antibody

mL : milliliter

MRI :Magnetic resonance imaging NPV : Negative predictive value

OR : Odd ratio

P value : Probability valuep53 : The 53 kda proteinPAF : Platelet-activating factor

PAI : Plasminogen activator inhibitor PCR : Polymerase chain reaction

PECAM : Platelet endothelial cell adhesion molecule

PH : Prolyl hydroxylase

i

∠List of Tables

PI3K/AKT: Phosphatidyl inositide-3- oh kinase and protein

kinase b

PPV : Positive predictive value PR : Progesterone receptor

PTEN : Phosphatase and tensin gene, ROC : Receiver operating chart

Rs : Reference snp

RT : reverse transcription
rTKs : Receptor tyrosine kinases
SBR : Scarff-bloom-richardson

:

SD : Standard deviation

Ser : Serine

SMCs : Smooth muscle cells

SN : Sensitivity SP : Specificity

TEM : Tie2-expressing monocytes

TGF : Tumor growth factor

Tie2 : Tyrosine kinase with immunoglobulin-like and EGF-

like domains 2

Tis : Tumor in situ TN : True negative

TNFα : Tumor necrosis factor-α TNM : Tumor-node-metastasis

TP : True positive Tyr : Tyrosin

UPA : Urokinase plasminogen activator
 uPA : urokinase plasminogen activator
 uPAR : uPA membrane bound receptor

US : Ultrasonography

VCAM1 : Vascular cell-adhesion molecule 1

VE-cadherin : Vascular endothelial

VEGF : Vascular endothelial growth factor

X : Mean

z : Mann-whitney test

χ2 : Chi square

LIST OF TABLES

Tab. No.	Subject	Page			
Table (1)	Principle Genes Mutated in Familial Breast Cancer	9			
Table (2)	Histopathological classification of breast cancer				
Table (3)	TNM Stages of Human Breast Cancer.				
Table (4)	Scarff-Bloom-Richardson Grading System				
Table (5)	Characteristics of Breast Cancer Patients' Group Regarding TNM Staging, Histopathological Type,Grade of Differentiation and Tumor Markers Level	66			
Table (6)	Descriptive and Comparative Statistics of Serum Ang-2 Levels among the Three Studied Groups Using Krukall-Wallis Test	67			
Table (7)	Comparative Analysis of Ang-2 Levels in the Three Studied Groups versus Each Other Using Wilcoxon Rank Sum Test	68			
Table (8)	Descriptive and Comparative Statistics of Various Studied Parameters in Grade II versus Grade III Breast Cancer patients Using Wilcoxon Rank Sum Test	69			
Table (9)	Descriptive and Comparative Statistics of Various Studied Parameters in Early versus Late TNM Stages of Breast Cancer Patients Using Wilcoxon Rank Sum Test	70			
Table (10)	Correlation Analysis between Ang-2 and Other Studied Tumor Markers in Breast Cancer Patients using Spearman's Rank Correlation Coefficient	71			
Table (11)	Diagnostic Performance of Ang-2 for Discrimination between both Breast Cancer and Pathological Control Groups from Healthy Control Group	72			

LIST OF FIGURES

Fig. No.	Subject	Page			
Fig. (1)	Structure of angiopoietin-2	27			
Fig. (2)	Fig. (2) Structural properties of the Tie receptors and the angiopoietin ligands				
Fig. (3)	Ang-2 /Tie signaling	32			
Fig. (4)	Model of the biofunctional effect of Ang-2 during angiogenesis	34			
Fig. (5)	Physiological vascular effects of the Angiopoietin–Tie system	35			
Fig. (6)	Angiopoietin—Tie effects during pathological vascular adaptation	38			
Fig. (7)	Fig. (7) Principle of sandwich ELISA				
Fig. (8)	Western blot of analysis of Ang-2 using Ang-2 antibody	45			
Fig. (9)	Ang-2 median levels (pg/mL) in the three studied groups	67			

ABSTRACT

Background: Breast cancer is the most common cancer among women and one of the most important causes of death among them. Angiogenesis is an important step for primary tumor growth, invasiveness, and metastases. Angiopoietins are well-recognized endothelial growth factors that are involved in angiogenesis associated with tumors.

Aim: To explore the diagnostic significance of serum angiopoietin-2 (Ang-2) in breast cancer and to evaluate its prognostic efficacy through studying the degree of its association with the TNM staging of the disease.

Patients and Methods: This study was conducted on (35) Egyptian female patients who were diagnosed as breast cancer according to histopathological examination of breast biopsy (Group 1, Breast Cancer Patients) and (25) female patients with benign breast diseases (Group II, Pathological Control Patients), in addition to (20) age - matched apparently healthy, free mammogram, females serving as healthy controls (Group III, Healthy Controls). For all participants, measurement of serum Ang-2 was done using enzyme linked immunosorbent assay (ELISA) technique.

Results: A highly significant increased levels of Ang-2 was observed in breast cancer patients when compared to healthy control group (Z=4.95, p<0.01). However, no significant difference was observed in Ang-2 levels between breast cancer patients group and pathological control group (Z=3.37, p>0.05). No significant difference was detected in Ang-2 levels in relation to TNM stage and histological grade. No significant correlation was found between Ang-2 levels and serum levels of CA15-3, hormone receptors, HER2/new receptor status (p>0.05, respectively).

Conclusion: This study revealed that Ang-2 serum levels were significantly increased in patient with breast cancer compared with healthy controls, indicating that high Ang-2 level is a promising non invasive biomarker for breast cancer diagnosis. However, no significant difference of Ang-2 levels was detected in relation of breast TNM staging in the population studied.

. Keywords: Breast cancer, Angiopoietins, Ang-2, ELISA

INTRODUCTION

Breast cancer is the most common cancer in women worldwide where it represents 25% of all cancers (*Ferlay et al.*, 2015), and ranks second as a cause of cancer related death in females (*Oak et al.*, 2016). Nearly 1.2 million new cases are diagnosed annually; this represents about 12% of all new cancer cases (*Ferlay et al.*, 2015).

Mammography is the gold standard for screening of early stage breast cancer, with a limited sensitivity of 37.5% (*Riedl et al.*, 2015). The false positive rate of mammography is too high to be tolerated, resulting in additional unnecessary follow-up testing or biopsy recommendations. Moreover, the achilles' heel of this technique is the risk of radiation-induced breast cancer during mammography (*Ali et al.*, 2015).

The two most widely applied serum tumor markers for breast cancer are carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA15-3). However, these two markers have a sensitivity of 54.4% and 48.6%, respectivily and a specificity of 77.6% and 89.8%, respectivily (*Park et al.*, 2014). Moreover, their serum levels are not correlated with staging of the breast cancer and their use is only limited to the breast cancer recurrence (*Moazzezy et al.*, 2014 and Di Gioia et al., 2016). Therefore, there is an urgent need for a diagnostic marker that allows the accurate early diagnosis of breast cancer.