

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

ENVIRONMENTAL IMPACT EVALUATION FOR REUSING DRAINAGE WATER FOR SOME VEGETABLE CROPS PRODUCTION IN ARID LANDS

By

AYMAN RAGAB ABU EL ELA MOHAMED

B.Sc. Agric. Sci. (Land Reclamation) Cairo University. 2003 M. Sc. Agric. Sci. (Agriculture and Desert Areas Affected by Salinity) Ain Shams University, 2018

> A Thesis Submitted in Partial Fulfilment Of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences

(Dry and Saline Farming Technology)

Arid Lands Agricultural Studies and Research Institute
Ain Shams University

Approval Sheet

ENVIRONMENTAL IMPACT EVALUATION FOR REUSING DRAINAGE WATER FOR SOME VEGETABLE CROPS PRODUCTION IN ARID LANDS

By

AYMAN RAGAB ABU EL ELA MOHAMED

B.Sc. Agric. Sci. (Land Reclamation) Cairo. University. 2003 M. Sc. Agric. Sci. (Agriculture and Desert Areas Affected by Salinity) Ain Shams University, 2018

This thesis for Ph. D. degree has been approved by:

Alaa Mohamed Zoheir El-Bably Prof. of Water Reqirements, Institute of Soil and Water, Agricultural Research Center.
Noha Samir Donia Prof. Environmental Hydraulics, Faculty of Graduate Studies and Environmental Research, Ain Shams University.
Usama Ahmed Ali El- Behairy Prof. of Vegetable Crops, Faculty of Agriculture, Ain Shams University.
Ayman Farid Abou Hadid Prof. Emeritus of Vegetable Crops, Faculty of Agriculture, Ain Shams University.

Date of Examination: 25/11/2021

ENVIRONMENTAL IMPACT EVALUATION FOR REUSING DRAINAGE WATER FOR SOME VEGETABLE CROPS PRODUCTION IN ARID LANDS

By

AYMAN RAGAB ABU EL ELA MOHAMED

B.Sc. Agric. Sci. (Land Reclamation) Cairo. University. 2003 M. Sc. Agric. Sci. (Agriculture and Desert Areas Affected by Salinity) Ain Shams University, 2018

Under the supervision of:

Dr. Ayman Farid Abou Hadid

Prof. Emeritus of Vegetables Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Usama Ahmed Ali El- Behairy

Prof. of Vegetables Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Karam Ahmmed Farrag

Researcher of Soil, Soil Department Central Lab. For Environmental Quality Monitoring (CLEQM), National Water Research Center.

ABSTRACT

Ayman Ragab Abu El Ela Mohamed, Environmental Impact Evaluation for Reusing Drainage Water for Some Vegetable Crops Production in Arid Lands. Unpublished Ph.D. Sc. Thesis, Department of Agricultural Sciences, Arid Lands Agricultural Studies and Research Institute, Ain Shams University, 2021.

The present study measured the concentrations of heavy metals (Zn, Ni, Pb, Cu, Cr, and Cd) in soils as well as vegetables (faba bean, cabbage, onion, garlic, zucchini, capsicum, eggplant, potato, okra and green bean) irrigated with wastewater in the western part of Giza governorate, Egypt. Human health risks to consumers of these vegetables were performed. The study revealed the considerable variations in metal contents of water, soil and vegetables samples. Generally, wastewater of the study drains was not suitable for irrigation purpose according to the bacteriological guidelines. Almost all the physicochemical parameters and heavy metals concentrations of water and soil samples were compatible with the recommended permissible limits of irrigation and agricultural use, respectively. Vegetable species showed remarkable difference in metals concentrations of various plant portion. Zn showed highest tissue concentrations followed by Cu. Heavy metals concentrations in different edible portions decreased in a descending order as Zn > Cu > Pb > Ni > Cr > Cd with low translocation values (< 1) for studied vegetables except for faba bean. The health risk index (RI) for humans was low if edible portions from studied vegetables are consumed, in particular Cd, Cr, Pb, and Ni whose concentration values were relatively higher than the health based guidelines values. Considering the probable health risk associated with the consumption of contaminated vegetables, it is important to regularly monitor the levels of metals in wastewater, soils and vegetables in the studied area.

Kew words: Heavy metals; Risk assessment; Vegetables and Wastewater.

ACKNOWLEDGEMENTS

The writer wishes to express his gratitude and sincere thanks to Prof. Dr. Ayman Farid Abou Hadid, Professor of Vegetable, Horticulture Department, Faculty of Agriculture, Ain Shams University, for his supervision, reviewing the manuscript, fruitful discussion during this work and for his valuable advices while carrying out this research work. He is an excellent supervisor, he cared me stimulating suggestions and he was available at all times when I needed his help and advice. It is a great honor to work under his supervision.

Deepest and sincere gratitude and appreciation to Prof. Dr. Usama Ahmed El-Behairy Professor of Vegetable Crops, Horticulture Department, Faculty of Agriculture, Ain Shams University, for his kind supervision, valuable assistance, moral and faithful attitude during the preparation of this manuscript.

I wish to express my deepest grateful thanks and sincere to Dr. Karam Farrag, Researcher in Soil Department, Central Lab. for Environmental Quality Monitoring (CLEQM), National Water Research Center, Egypt, for his supervision, valuable assistance, moral and faithful attitude during the preparation of this manuscript, he is a great professor because preferred me more than his family and gave me all his time and his effort to finalize this research.

My grateful thanks also to all staff members of Arid and Agricultural Research and Service Center, Faculty of Agriculture, Ain Shams University, for their kind help and facilities granted during this work.

Finally, the author dedicates this thesis to his family (wife and sons) for their encouragement during the study.

CONTENTS

No.	Title	Page
1. INTRODUC	CTION	1
1.1.	Problem statement	1
1.2.	Need for research	3
1.3.	Objectives and scope	4
1.4.	Organization of thesis	4
2. REVIEW.		6
2.1.	Overview	6
2.2.	Water scarcity and its impact on agriculture	6
2.3.	Sustainability of wastewater reuse in irrigation	9
2.4.	Types of wastewater	12
2.4.1.	Urban wastewater	13
2.4.2.	Treated wastewater	13
2.4.3.	Reclaimed water or recycled water	13
2.4.4.	Grey water	13
2.5.	Categories of wastewater use	14
2.5.1.	Direct use of untreated wastewater	14
2.5.2.	Direct use of treated wastewater	14
2.5.3.	Indirect use of treated or untreated wastewater	14
2.5.4.	Planned use of wastewater	14
2.6.	Irrigation systems used in wastewater practices	14
2.7.	Characteristics of wastewater effluents	18
2.7.1.	Physico-chemical characteristics	18
2.7.1.1.	Metals and metalloids	18
2.7.1.2.	Nutrient elements	19
2.7.1.3.	Salts and specific ionic species	20
2.7.1.4.	Persistent organic pollutants (POPs	20
2.7.2.	Microbiological characteristics	20
2.8.	Benefits and risks of wastewater use in agriculture	21

No.		Title	Page
	2.8.1.	Benefits of wastewater use	21
	2.8.2.	Risks of wastewater use	22
	2.8.2.1.	Health risks	22
	2.8.2.2.	Environmental risks	26
	2.8.2.2.1.	Groundwater and surface-water contamination	28
	2.8.2.2.2.	Agricultural sustainability	29
	2.8.3.	Soil and Wastewater Interrelationship	30
	2.8.3.1.	Effect of wastewater irrigation on soil physical	
		Properties	30
	2.8.3.2.	Effect of wastewater irrigation on soil chemical	
		Properties	33
	2.9.	Wastewater reuse practices in Egypt	35
	2.9.1.	Reuse of wastewater for agriculture in Egypt	35
	2.10.	Standards and guidelines for wastewater reuse in	
		agriculture	36
	2.11.	Recent guidelines for the safe reuse of wastewater	
		Irrigation	37
	2.12.	Regulations and guidelines concerning wastewater	
		Reuse in Egypt	40
3. N	MATERIAL	S AND METHODS.	47
	3.1.	Description of the study area	47
	3.2.	Samples collection and preparation	49
	3.3.	Analytical methods	53
	3.3.1.	Water samples	53
	3.3.1.1.	Organo-chemical parameters	53
	3.3.1.1.1.	Dissolved oxygen (DO)	53
	3.3.1.1.2.	Biochemical oxygen demand (BOD)	53
	3.3.1.1.3.	Chemical oxygen demand (COD)	53
	3.3.1.2.	Physico-chemical parameters	53
	3.3.1.2.1.	Hydrogen ion concentration (pH)	54
	3.3.1.2.2.	Total dissolved salts (TDS)	54