

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Correlation between Severity of Liver Disease According to CHILD & MELD Scores and Degree of Cardiac Impairment

Thesis

Submitted for Partial Fulfilment of Master Degree in Gastroenterology and Hepatology Medicine

By

Nahed Abd El-Monem Darwish

M.B.B.CH

Under supervision of

Prof. Dr. Noha Abd El- Razek El Nakeeb

Professor of Internal Medicine - Gastroenterology and Hepatology Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. George Safwat Riad

Assistant Professor of Internal medicine - Gastroenterology and Hepatology Faculty of Medicine, Ain Shams University

Dr. Gina Gamal Naguib

Lecturer of Internal Medicine - Gastroenterology and Hepatology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Dr. Noha Abd El- Razek El Nakeeb, Professor of Internal Medicine - Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Assist. Prof. Dr. George Safwat Riad, Assistant Professor of Internal Medicine - Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Gina Gamal Naguib, Lecturer of Internal Medicine - Gastroenterology and Hepatology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Nahed Abd El-Monem

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	
Aim of the Work	4
Review of Literature	
Liver Cirrhosis	5
Cirrhotic Cardiomyopathy	34
Patients and Methods	68
Results	73
Discussion	107
Summary	117
Conclusion	120
Recommendations	121
References	122
Arabic Summary	

List of Abbreviations

Abb.	Full term
ALKM-1	. Anti-liver-kidney microsomal antibodies type 1
	. Alkaline phosphatase
	. Alanine aminotransferase
	. Anti-nuclear antibodies
	. Atrial natriuretic peptide
	. AST to Platelet Ratio Index
	. Anti-smooth muscle antibodies
	. Aspartate aminotransferase
	. Brain natriuretic peptide
	. Brain-type natriuretic peptide
CBC	. Compete Blood Count
	. Cirrhotic Cardiomyopathy Consortium in 2020
CCM	. Cirrhotic Cardiomyopathy
CT	. Computed tomography
CTP	. Child-Turcotte-Pugh
ECG	. Electrocardiographic
EGD	. Esophagogastroduodenoscopy
ESLD	. End-stage liver disease
ET-1	. Endothelin-1
FHF	. Fulminant hepatic failure
GGT	. Gamma glutamyl transferase
GLS	. Global longitudinal strain
GLS	. Global longitudinal systolic strain
HBV	. Hepatitis B virus
HCC	. Hepatocellular carcinoma
HCV	. Hepatitis C virus
HIV	. Human immunodeficiency virus
HPS	. hepatopulmonary syndrome
HRS	. Hepatorenal syndrome

List of Abbreviations cont...

Abb.	Full term
HSCs	. Hepatic stellate cells
HTN	_
	Hepatic venous pressure gradient
	. Immunoglobulin G
=	. International normalized ratio
KCs	
LA	-
	Left atrial volume index
	. Lipopolysaccharide binding protein
	Liver function tests
LV	. Left ventricular
	. Left Ventricular Diastolic Dysfunction
	. Left ventricular ejection fraction
	. Model for end-stage liver disease
MR	. Magnetic resonance
	. Magnetic Resonance Imaging
	. Nonalcoholic steatohepatitis
NO	. Nitric oxides
PRA	. Plasma renin activity
PT	. Prothrombin time
RAAS	. Renin-angiotensin-aldosterone system
SECs	. Sinusoidal endothelial cells
STE	. Speckle Tracking Echocardiography
TDI	. Tissue Doppler Imaging
TNF-α	. Tumor necrosis factor alpha
TTE	. Transthoracic echocardiogram
WCG	. World Congress of Gastroenterology

List of Tables

Table No.	Title Pag	ge No.
Table (1):	Liver Stiffness Scores in Ultrasoun Elastography	
Table (2):	Non-Invasive Evaluation of Liver Fibrosis Cirrhosis	
Table (3):	Redefining Criteria for CCM	38
Table (4):	Child-Pugh score of liver diseases	
Table (5):	Model for end-stage liver disease (MELD calculation)
Table (6):	The Model for End-stage Liver Diseas (MELD) score	e
Table (7):	Age and sex distribution among the studied cases	e
Table (8):	Analysis of laboratory data, MELD.S an Child S scores among the studie patients	d d
Table (9):	Echo and ECG results of the studie patients	d
Table (10):	Comparison of different Child score is different age and sex of the studie patients	n d
Table (11):	Relation of Child score with Meld scor and laboratory data.	e
Table (12):	Relation of Child score with Echo an ECG results.	d
Table (13):	Relation of ECHO with age and se results.	X
Table (14):	Relation of ECHO with meld score CHILD.S and laboratory data	*
Table (15):	Relation between ECHO and ECG.	
Table (16):	Relation of ECG result with age and se of the studied patients.	X

List of Tables cont...

Table No.	Title	Page No.
m 11 (4 m).	D. L. C. A. F. C. L. C.	
Table (17):	Relation of ECG result with Child & Meld score and laboratory data	,
Table (18):	Relation between ECG result and results.	
Table (19):	Correlation between Meld score and other studied parameters	
Table (20):	Relation between Meld score and child score, echo results and ECG re of the studied patients.	esults

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2): Figure (3):	The natural course of cirrhosis	ld be arices, isease
	severity by assessing syndysfunction using the MELD-Na Patients should be educated or importance of nutrition and immuniand avoid hepatotoxic drugs	score. n the zation
Figure (4):	Classification of severity of liver cir (five-stage concept model)	
Figure (5):	Complications of decompensated cirr	hosis 23
Figure (6):	Abdominal ultrasound findings in p with decompensated viral cirrhosis	
Figure (7):	Extrahepatic complications in cirrho	sis 40
Figure (8):	Development of cardiac dysfunction related complications in patients cirrhosis	with
Figure (9):	Cirrhotic cardiomyopathy pathogene	
Figure (10):	Possible mechanisms of developme multiorgan failure in advanced cir	ent of rhosis
Figure (11):	and portal hypertension Sex distribution among the studied c	
Figure (12):	Child score distribution among studied patients.	the
Figure (13):	Echo results of the studied patients.	
Figure (14):	ECG results of the studied patients.	
Figure (15):	Relation of Child score with meld sco	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (16): Figure (17):	Relation of Child score and AST level Relation of Child score with bilirubin	total
Figure (18):	Relation of Child score with creatining	ne 81
Figure (19):	Relation of Child score with INR	82
Figure (20):	Relation of Child score with and PT.	82
Figure (21):	Relation of Child score with I results.	
Figure (22):	Relation of Child score with ECG res	ults 84
Figure (23):	Relation of Child score with ECG res	ults 85
Figure (24):	Relation of ECHO with meld score	88
Figure (25):	Relation of ECHO with d.Billirubin.	88
Figure (26):	Relation of ECHO with creatinine	89
Figure (27):	Relation of ECG results with age of studied patients.	
Figure (28):	Relation of ECG results with sex studied patients.	
Figure (29):	Relation between ECG results and score.	
Figure (30):	Relation between ECG result and score.	
Figure (31):	Relation between ECG result and bilirubin.	
Figure (32):	Relation between ECG result and bilirubin	
Figure (33):	Relation between ECG result and alk level.	

List of Figures cont...

Fig. No.	Title	Page No.
Figure (34):	Relation between ECG result and results.	
Figure (35):	Correlation between Meld score and	AST 99
Figure (36):	Correlation between Meld score and	ALT 99
Figure (37):	Correlation between Meld score a: Bilirubin.	
Figure (38):	Correlation between Meld score as Bilirubin.	
Figure (39):	Correlation between Meld score Albumin.	
Figure (40):	Correlation between Meld score and	PT 101
Figure (41):	Correlation between Meld score and	INR 102
Figure (42):	Correlation between Meld score creatinine.	
Figure (43):	Correlation between Meld score and	NA 103
Figure (44):	Relation between meld score and results.	
Figure (45):	Relation between meld score and score.	
Figure (46):	Relation between meld score and results.	

Introduction

Cirrhotic Cardiomyopathy (CCM) is a chronic cardiac dysfunction associated with liver cirrhosis without previous heart disease irrespective of the etiology of the cirrhosis (*Toma et al.*, 2020).

CCM is first defined in 2005 during the World Congress of Gastroenterology. Its criteria consisted of echocardiographic parameters to identify subclinical cardiac dysfunction in the absence of overt structural abnormalities. Significant advancements including the integration of myocardial deformities imaging into routine clinical practice to identify subclinical cardiovascular dysfunction. Therefore, new criteria based on contemporary cardiovascular imaging parameters are needed (*Izzy et al.*, 2020).

In 1953, CCM was described in patients with alcoholic cirrhosis in absence of concomitant cardiac disease as a hyperdynamic circulation with high cardiac output and peripheric vessels vasodilatation (*Hammami et al.*, 2017).

Liver Cirrhosis is a multi-systemic disorder characterized by hyperdynamic circulation which can progress to multiple organ dysfunctions. Recent studies have demonstrated autonomic dysfunction and CCM including diastolic dysfunction, systolic dysfunction with electrophysiological abnormalities in patients with cirrhosis (*Baysal et al.*, 2020).

1