

# بسم الله الرحمن الرحيم



-C-02-50-2-





شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم





## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

### قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار













بالرسالة صفحات لم ترد بالأصل



B17/<V

#### Towards Minimizing Waste in Reinforcing Steel Bars

BY

#### Maher Awad Mustafa

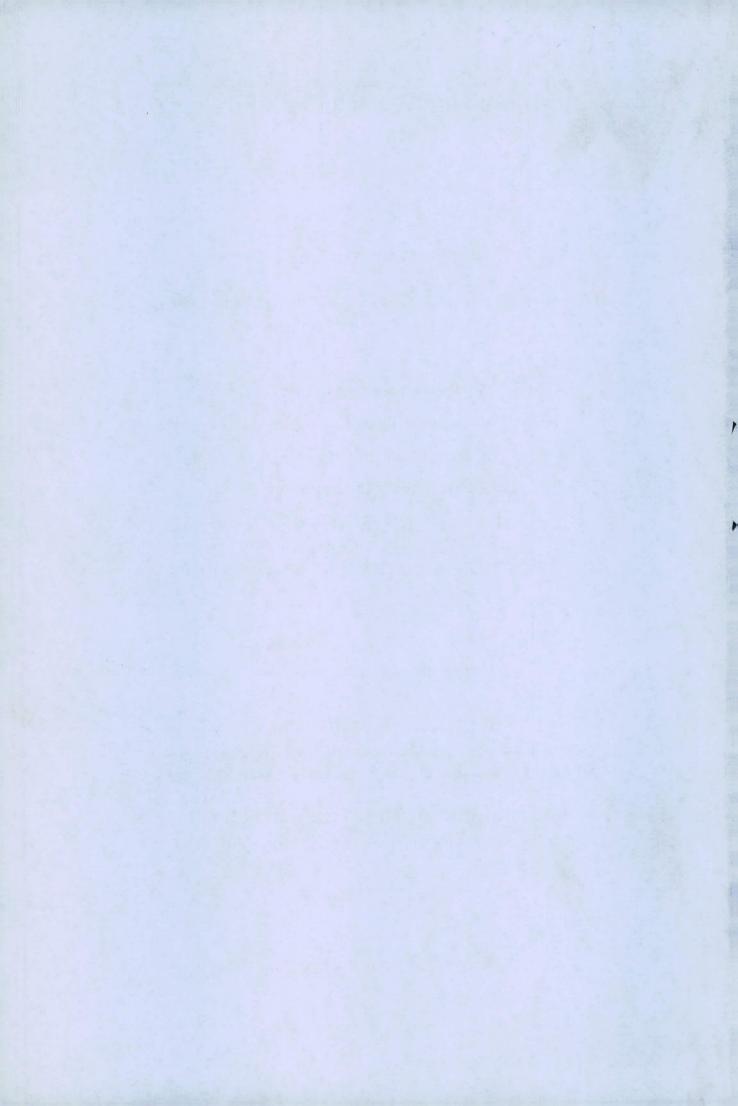
B.Sc. of civil Engineering Damascus Univ., Syria, 1990

A Thesis submitted to the
Faculty of Engineering at Cairo University
In partial Fulfillment of the
Requirement for the degree of

MASTEER OF SCINCE
IN
CONSTRUCTION MANAGEMENT ENGINEERING

Under the supervision of

Dr. Moheeb El-Said Ibrahim


Prof. of Construction Management and Engineering,
Structural Dep., Faculty of Engineering, Cairo Univ.

Dr. Mahmoud Abdel Salam Taha Lecturer, Faculty of Engineering, Cairo Univ.

Mahmond

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

January - 2000



#### Towards Minimizing Waste in Reinforcing Steel Bars

BY

Maher Awad Mustafa B.Sc. of civil Engineering Damascus Univ., Syria, 1990

> A Thesis submitted to the Faculty of Engineering at Cairo University In partial Fulfillment of the Requirement for the degree of

#### MASTEER OF SCINCE IN CONSTRUCTION MANAGEMENT ENGINEERING

| Approved by the Examining Committee                                                                  |                              |
|------------------------------------------------------------------------------------------------------|------------------------------|
| Prof. Moheeb El-Said Ibrahim Prof. of Construction Management and Engin Cairo University             | ,Thesis Main Advisor eering, |
| Prof. Mohammed H. El-Zanaty Prof. of Structural Engineering, Cairo University.                       | ,Member<br>HEL Zawaly        |
| Dr. Mohamed Abdellatif Bakry Manager of Planning and Information Technological Fund for Development. | ,Member blogy Department,    |

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

January - 2000



#### **ACKNLOWLEDGEMENT**

Many people have given generously of their time in assisting me through this work. Their efforts have been of great value to me. I would like to take this opportunity to express my deep gratitude and sincere appreciation to my Professor

### Prof. Moheeb El-Said Ibrahim and

Dr Mahmoud Abdel-Salam Taha.

For their contribution, significant help, and great guidance.



#### **Abstract**

Cost of reinforcing steel bars usually represents a major cost item in building projects. Therefore, savings the cost of this item will affect the project total cost. This cost saving can be achieved:

- During design phase, by choosing the best design, that saving reinforced steel bars quantities.
- 2. During construction phase, by looking for an optimum cutting method for reinforced bars, thereby will, no doubt, minimize the waste of steel bars, this will save in turn the cost of reinforced steels and as a result the cost of the project.

This thesis presents the development of a computer program using the Visual Basic and based on a relational database management system to implement the following main objective:

1. Minimize the waste in reinforcing steel bars.

and by lateral implement the following objectives:

- 1. Prepare a bending list for each structural element in the residential building.
- 2. Calculate the quantities of reinforced bars which will help the recruiting department in purchasing the steel bars..

To achieve such object a relational database system is developed in two phases:

- 1. The conceptual design phase that involved the preparation of a detailed data model and the relationship between them.
- A Microsoft Access Relational Database Manager is used to implement the conceptual design phase.

Also the linear programming (simplex method) is applied in solving the optimum cutting method. The program can be developed to deal with other different project types such as bridges, irrigation works, etc...

The existence of such a system will help the construction industry practitioners in decreasing reinforced steel waste percentage.



### TABLE OF CONTENT

|                                             | Page |
|---------------------------------------------|------|
| Acknowledgment                              | I    |
| Abstract                                    | II   |
| Table of contents                           | III  |
| List of Table                               | VII  |
| List of Figure                              | XI   |
| Chapter 1: Introduction                     |      |
| 1-1- Problem Statement                      | 1    |
| 1-2- Thesis objective                       | 2    |
| 1-3- Thesis Outline                         | 2    |
| Chapter 2: Research Methodology             |      |
| 2-1. Introduction                           | 4    |
| 2-2. Components of the Database Environment | 4    |
| 2-3. Basic Concepts and Terminology         | 6    |
| 2-3-1. Reality                              | 7    |
| 2-3-2. Metadata                             | 8    |
| 2-3-3.Data                                  | 10   |
| 2-4. Association Between Data Item          | 11   |
| 2-4-1. Types of Association                 | 12   |
| 2-4-2. Reverse Association                  | 13   |
| 2-5. Bubble Charts                          | 14   |
| 2-6. Association between Records            | 15   |
| 2-6-1. Types of Associations                | 16   |
| 2-7. Data Model                             | 17   |
| 2-7-1. Object-Based Logical Models          | 17   |
| 2-7-1-1. The Entity-Relationship Model      | 18   |
| 2-7-1-2. The Object-Oriented Model          | 20   |
| 2-7-2. Record-Based Logical Models          | 21   |

| 2-7-2-1. Relational Model                                  | 21 |
|------------------------------------------------------------|----|
| 2-7-2-1-1. Relationships in the Relational Data Model      | 23 |
| 2-8. Database Design                                       | 24 |
| 2-8-1. Steps in Database Design                            | 24 |
| 2-8-1-1. Requirement Definition                            | 24 |
| 2-8-1-2. Conceptual Design                                 | 24 |
| 2-8-1-3. Implementation Design                             | 25 |
| 2-8-1-4. Physical Design                                   | 26 |
| 2-9. Normalization                                         | 26 |
| 2-9-1. Basic Concept                                       | 26 |
| 2-9-2. Well-Structure Relation                             | 26 |
| 2-9-3. Steps in Normalization                              | 26 |
| 2-10. What is Linear Programming                           | 27 |
| 2-11. Scope of Linear Programming in Construction Industry | 28 |
| 2-12. Requirements for a Linear Programming Problem        | 28 |
| 2-13. Formulation of Linear Programming Model              | 28 |
| 2-14. Forms of Linear Programming                          | 29 |
| 2-14-1. The Canonical Form                                 | 29 |
| 2-14-2. The Ordinary Form                                  | 30 |
| 2-14-3. The Standard Form                                  | 30 |
| 2-15. Methods of Solution Linear Programming problems      | 31 |
| 2-15-1. Graphical Solution of Linear Programming           | 32 |
| 2-15-2. Graphical Solution of Linear Programming           | 32 |
| 2-15-3. Simplex Method                                     | 33 |
| 2-15-3-1. Principles of the Simplex Method                 | 33 |
| 2-16. Advantage of Linear Programming                      | 33 |
| 2-17. Disadvantage of Linear Programming                   | 35 |
| 2-10. Summary                                              | 35 |
| Chapter 3 System Analysis And Design                       |    |
| 3-1. Introduction                                          | 36 |
| 3-2. Questionnaire                                         | 36 |