

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Effect of Incentive Spirometer Exercise on Pulmonary Functions in Children with Spastic Cerebral Palsy

Thesis

Submitted for Partial Fulfillment of the Master Degree in Pediatrics

By

Dina Ashour Ramadan Mohamed

M.B.B.Ch, Faculty of Medicine, Ain Shams University

Under Supervisors

Prof. Dr. Magda Yehia H. Elseify

Professor of Pediatric
Faculty of Medicine – Ain Shams University

Dr. Sally Rafaat Ishak

Lecturer of Pediatric
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

First of all, thanks to Allah whose magnificent help was the main factor in completing this work.

I would like to express my deepest appreciation and gratefulness to Prof. Dr. Magda Yehia H. Elseify, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her continuous supervision, fruitful guidance and generous support. Indeed, this work would not be accomplished without her efforts and advice.

Special thanks to Dr. Sally Raafat Ishak, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her tremendous effort and precious advice for the proper achievement of this work.

My special thanks to all my patients and their parents who agreed to share in this study. I'm thankful to them for their effort, time and cooperation.

Last but not least, I would like to express my endless gratitude to my family for their support.

Contents

Subjects	Page
List of abbreviations List of figures List of tables	IV
• Introduction	1
Aim of the Work	3
• Review of Literature	
♦ Chapter (1): Cerebral Palsy	4
♦ Chapter (2): Chest Physiotherapy	37
Subjects and Methods	51
• Results	56
• Discussion	68
• Summary	76
• Conclusion	78
• Recommendations	79
• References	80
Arabic Summary	

List of Abbreviations

AARC	American Association for Respiratory Care
ACT	airway clearance techniques
AFOs	Ankle foot orthoses
BMD	bone mineral density
CBL	Cerebrolysin
CF	cystic fibrosis
CNS	Central nervous system
COPD	chronic obstructive pulmonary disease
СР	Cerebral Palsy
CPT	Chest physiotherapy
CS	ceserian section
DHA	docosahexaenoic acid
DXA scan	Dual-energy radiography absorptiometry
FET	Forced expiration technique
FEV1	forced expiratory volume at one second
FRT	feedback respiratory training
FVC	forced vital capacity
GABA	gamma-aminobutyric acid
GMFCS	Gross Motor Function Classification System

List of Abbreviations

HBO2	Hyberbaric oxygen
HFCWO	High Frequency Chest Wall Oscillation
HIE	Hypoxuc ischemic encephalopathy
IS	Incentive Spirometer
MRI	Magnetic resonance imaging
NINMS	National institute of Neuro-motor system
PD&P	Postural drainage and percussion
PEF	peak expiratory flow
PEP	Positive Expiratory Pressure
PUFA	polyunsaturated fatty acid
PVL	periventricular leukomalacia
QOL	quality of life
RDS	Respiratory distress syndrome
UMP	. uridine-51 -monophosphate
US	Ultrasound
VC	vital capacity

.

List of Figures

No.	<u>Figure</u>	Page
1	MRI brain showing brain lesions in CP.	7
<u>1</u> <u>2</u>	Association between gestational age and the	9
	prevalence of cerebral palsy.	9
<u>3</u>	Topographical description in cerebral palsy:	11
	unilateral and bilateral cerebral palsy.	11
<u>4</u>	GMFCS level 1.	22
<u>5</u>	GMFCS level 2.	23
	GMFCS level 3.	23
<u>6</u> <u>7</u> <u>8</u>	GMFCS level 4.	24
<u>8</u>	GMFCS level 5.	25
9	High Frequency Chest Wall Oscillation	41
	(HFCWO) device.	41
<u>10</u>	The Positive Expiratory Pressure set.	42
<u>11</u>	Positive expiratory pressure Therapy-PEP.	44
<u>12</u>	Mediflo Duo device.	47
<u>13</u>	Mediciser device.	47
<u>14</u>	Volume-oriented devices.	48
<u>15</u>	Incentive spirometer Via Londonio,	5 2
	12(Milano)-Italy.	53
<u>16</u>	Spirometer Sensormedics, serial number	54
	6730, country of origin: The Netherlands.	54
<u>17</u>	A graph showing more improvement in	62
	FVC with time in the study group.	04
<u>18</u>	A graph showing more improvement in	62
	FEV1 with time in the study group.	04

List of Tables

No.	<u>Table</u>	<u>Page</u>
1	Comparison between cases and controls regarding personal data.	56
<u>2</u>	Comparison between cases and controls regarding pulmonary functions before intervention.	57
3	Comparison between cases and controls regarding pulmonary functions one month after intervention.	58
<u>4</u>	Comparison between cases and controls regarding pulmonary functions two months after intervention.	59
<u>5</u>	Comparison between pre and post intervention data in cases.	60
<u>6</u>	Comparison between pre and post intervention data in controls.	61
7	Correlation between pulmonary function tests and GMFCS among cases.	63
8	Correlation between pulmonary function tests and GMFCS among controls.	64
9	Levels of GMFCS among cases.	64
<u>10</u>	Comparison between pre and post intervention data among cases with GMFCS level 2.	65

List of Tables

No.	<u>Table</u>	<u>Page</u>
11	Comparison between pre and post intervention data among cases with GMFCS level 3	66
12	Comparison between pre and post intervention data among cases with GMFCS level 4.	67

Introduction

Cerebral palsy (CP) is considered the most common physical disability in children with incidence about 3.6/1,000 children (Yeargin-Allsop et al., 2008). In 2006 an international workshop suggested a new definition that stated that "Cerebral palsy (CP) describes a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to nonprogressive disturbances that occurred in the developing fetal or infant brain. The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, and behaviour; by epilepsy, and by secondary musculoskeletal problems" (Rosenbaum et al., 2007). Children with cerebral palsy have a high incidence of respiratory dysfunction, such as recurrent chest infections, atelectasis, bronchiectasis, sleep apnea, and chronic obstructive lung disease (Allen, 2010).

Children with spastic CP have lower pulmonary function than normal healthy children (*Kwon and Lee, 2014*) due to decreased chest wall mobility, deviation of optimal chest wall structure and insufficient respiratory muscle strength (*Wang et al., 2012*).