

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

## جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY



# Ain Shams University Faculty of Engineering Electrical Power and Machines Department

## Transformer Insulation Deterioration as Influenced by Various Voltage Stresses and Effects of Using Nanofluids

A Thesis Submitted in Partial Fulfillment for the Requirement of the Degree of **Doctor of Philosophy** in Electrical Engineering

Submitted By

#### **Asmaa Badr Ibrahim Abdel-Gawad**

B.Sc. Electrical Engineering, Aswan University, 2007 M.Sc. Electrical Engineering, Aswan University, 2014

Supervised By

#### Prof. Dr. Soliman Mohamed Eldebeiky

Electrical Power & Machines Dept. Faculty of Engineering, Ain Shams University

#### Prof. Dr. Loai Saad El-deen Nasrat

Electrical Engineering Dept. Faculty of Engineering, Aswan University

#### **Dr. Ahmed Hossam Gad**

Electrical Power & Machines Dept. Faculty of Engineering, Ain Shams University



**Electrical Power and Machines** 

## Transformer Insulation Deterioration as Influenced by Various Voltage Stresses and Effects of Using Nanofluids

by

#### Asmaa Badr Ibrahim Abdel-Gawad

Master of Science In Electrical Engineering
(Electrical Power and Machines Engineering)
Faculty of Engineering, Aswan University, 2014

#### **Examiners' Committee**

| Name and Affiliation                                 | Signature |
|------------------------------------------------------|-----------|
| Prof. Dr. Mazen Mohamed Shafik Abdel-Salam           |           |
| Electrical Power and Machines, Assuit University     |           |
| Prof. Dr. Hanfy Mahmoud Ismail                       |           |
| Ain Shams University Electrical Power and Machines,  |           |
| Prof. Dr. Soliman Mohamed Eldebeiky                  |           |
| Electrical Power and Machines , Ain Shams University |           |
| Prof. Dr. Loai Saad El-deen Nasrat                   |           |
| Electrical Power and Machines Aswan University       |           |

Date:16 December 2020

## **Dedication**

## To all who has been a great support for me, I dedicate this work

#### **Statement**

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the award of Doctor of Philosophy degree in Electrical Engineering.

The author declares that no part of the work included in this thesis has been submitted to any other university / scientific entity for the award of any Degree or Diploma.

#### **Researcher Data**

Name : Asmaa Badr Ibrahim Abdel-Gawad

Date of birth : 27/08/1985

Place of birth : Aswan

Last academic degree : Master of Science in Electrical

Engineering

Field of specialization : High Voltage

University issued the degree : Aswan University

Date of issued degree : 2007

Current job : Electrical Engineer - Lake Nasr

Authority

### Acknowledgements

In the name of Allah, the Beneficent, the Merciful.

Praises be to **Allah** for giving me the efforts, patience, and success to complete this PhD thesis. Without his infinite mercy and grace, I would never be able to reach at this stage.

I have the great honor to express my appreciations and thanks to my committee for their continuous support and guidance throughout this work. Special thanks go to my first supervisor **Prof. Dr. Soliman M. Eldebeiky** for his continuous guidance, helpful support and suggestions which kept me on track throughout my study. His endless drive for better results

highly appreciated. Deep thanks to **Prof. Dr. Loai S. Nasrat** for dedicating so much of his time to aid me and guide me throughout the period of the work. I wish also to express my appreciation to **Dr. Ahmed H. Gad** for his attention and suggestions.

Sincere thanks are extended to the staff and technicians of the Extra High Voltage Research Centre (EHVRC) Laboratory especially, Eng. Mohamed Selim for their contribution during carrying out this research work. Appreciation goes also to all the staff in the Nano Technology Research Center (NTRC), Department of Electrical Engineering, Faculty of Energy Engineering for their assistance during my sample synthesis in that laboratory.

Finally, I would like to express my heart-felt gratitude to my family and friends, for their encouragement and companionship when encountering difficulties. I never would have made it this far without their constant love and support. I am grateful for everyone believed in me and supported me throughout my educational experience.

#### **Abstract**

With the tendency of the power system to increase the generating capacities and transmission voltage levels to meet the rapidly growing worldwide energy demands, associated problems with additional stresses on conventional insulation systems of high voltage equipment such as power transformer insulations have become an expected concern. Additional stresses will affect the lifetime of transformer insulations. Consequently, there is a critical need to develop new reliable transformer insulation materials to meet these worldwide challenges and resist the faster the deterioration effect.

As nanotechnology moves forward, nanofluids represent very promising fluids for applications as transformer insulating liquids, from the viewpoint of their excellent dielectric and thermal properties. Where there are many research papers stated that nanofluids provide better heat transfer and dielectric properties than those of base liquids. Nevertheless, it is still a significant step to move these fluids from the lab domain to high voltage power transformers. This step still requires more comprehensive studies of dielectric performance of nanofluids.

In this thesis, the dielectric performance of the transformer mineral oil (MO) based on these nanofluids developed using conductive Zinc Oxide (ZnO), semi-conductive Titanium Dioxide (TiO2) and Insulating Silicon Oxide (SiO2) nanoparticles have been researched. Nanofluids (NFs) were prepared with various concentrations ranging from 0.01 to 0.1 wt. %. The experiments have been designed and performed on prepared samples for study of: AC breakdown voltage, relative permittivity, DC conductivity, lightning impulse breakdown voltage, acceleration voltage and breakdown time. Studies on the analysis of the dissolved gas in the presence of nanoparticles under impulse faults have also been put forward. The experimental results demonstrated improvement of the AC breakdown strength with ~30 % enhancement for ZnO concentration of 0.06 wt. %, ~22 % for TiO2 concentration of 0.1 wt. % and~15% for SiO2 at relatively low concentration of 0.01 wt. %. Positive effects on relative permittivity and the opposite ones on DC conductivity have been obtained for

tested nanofluids. For positive impulse voltage, the breakdown voltage of ZnO nanofluid achieved ~9% enhancement under quasi-uniform field and ~32% under non-uniform field. For negative impulse voltage, ZnO nanofluid achieved slight worsening of breakdown voltage by ~9%. Potential mechanisms behind nanoparticle influence on the dielectric properties of nanofluid have been discussed and analyzed by using thermally stimulated current technique.

Moreover, the deterioration behavior of nanofluid in combination with cellulose insulation has been investigated and compared with that of mineral oil-cellulose system. Accelerated thermal aging experiments of cellulosic insulations impregnated in nanofluid and mineral oil were conducted under laboratory conditions at 120°C for aging period up to 20 days. Different aging properties such as tensile strength, breakdown voltage, and dielectric dissipation factor of impregnated paper/pressboards were monitored and analyzed throughout the aging period. In addition, properties of oils related deterioration rate such as breakdown voltage, acidity value, interfacial tension, viscosity and color are thoroughly investigated in this research work to assess the degree of deterioration of both nanofluid and mineral oil. It is found that paper/pressboards aged in nanofluid possessed higher mechanical and dielectric properties than those in mineral oil. Regarding aged oils, nanofluid exhibited higher values of aging indicators such as interfacial tension, acidity and viscosity than mineral oil. The breakdown voltage of nanofluid was superior to that of mineral oil in the initial aging period, thereafter, showed a lesser reduction tendency with increasing age.

**Keywords:** Power transformer, Mineral oil, Nanofluid, lightning impulse voltage, Aging.

## **Table of Content**

| Resear  | cher Data                                              | iii           |
|---------|--------------------------------------------------------|---------------|
| Abstra  | ct                                                     | V             |
| Table   | of Content                                             | vii           |
| LIST (  | OF ABBREVIATIONS                                       | xi            |
| List of | Symbols                                                | xiii          |
| List of | Table                                                  | XV            |
| List of | Figures                                                | xvii          |
| Chapte  | er 1                                                   | 1             |
| Introdu | action                                                 | 1             |
| 1.1     | Research Background                                    | 1             |
| 1.2     | Motivation & Problem                                   | 5             |
| 1.3     | Objectives & Contributions                             | 7             |
| 1.4     | Thesis Outline                                         | 10            |
| Chapte  | er 2                                                   | 13            |
| Literat | ure Review                                             | 13            |
| 2.1     | Introduction                                           | 13            |
| 2.2     | Transformer Insulations                                | 14            |
| 2.2     | 2.1 Transformer Mineral oil                            | 14            |
| 2.2     | 2.2 Transformer Cellulose Insulation                   | 16            |
| 2.2     | 2.3 Transformer Insulation Deterioration               | 17            |
| 2.3     | Breakdown Mechanisms of Insulating Liquids             | 20            |
| 2.3     | 3.1 Breakdown Theories                                 | 21            |
|         | 2.3.1.1 Electronic Theory                              | 21            |
|         | 2.3.1.2 Particle Theory                                | 22            |
| 2       | 2.3.1.3 Bubble Theory                                  | 23            |
| 2.3     | 3.2 Breakdowns under Effect of Polarity and Field C 25 | onfigurations |
| 24'     | Transformer Oil-Based Nanofluids                       | 30            |

| 2.4.1 AC Breakdown Strength of Nanofluids                       | 31 |
|-----------------------------------------------------------------|----|
| 2.4.2 Impulse Breakdown Strength of Nanofluids                  | 36 |
| 2.4.3 Electrical Parameters of Nanofluids                       | 38 |
| Chapter 3                                                       | 40 |
| Preparation of Nanofluids and Estimation                        | 40 |
| of their Physical Properties                                    | 40 |
| 3.1 Introduction.                                               | 40 |
| 3.2 Characterizations of Materials                              | 41 |
| 3.2.1 Nanoparticles                                             | 41 |
| 3.2.2 Base liquid                                               | 44 |
| 3.3 Mineral Oil Based -Nanofluids Preparation                   | 45 |
| 3.3.1 Nanofluids Concentrations                                 | 47 |
| 3.4 Stability Evaluation                                        | 49 |
| 3.4.1 Zeta Potential Analysis                                   | 51 |
| 3.4.2. Spectral Absorbance Analysis                             | 54 |
| 3.5 Physical Properties                                         | 56 |
| 3.5.1 Kinematic Viscosity                                       | 56 |
| 3.6 Moisture Content                                            | 58 |
| Chapter 4                                                       | 61 |
| Investigation of the Dielectric Performance under AC Voltage    | 61 |
| 4.1 Introduction.                                               | 61 |
| 4.2 AC Breakdown Voltage                                        | 62 |
| 4.2.1 Statistical Analysis of the Breakdown Data                | 64 |
| 4.2.2 Results for AC Breakdown Tests                            | 66 |
| 4.3 Discussion of the Nanoparticles Role in the Break Mechanism |    |
| 4.3.1 Measurement of the Trap Distribution Characteristics      | 79 |
| 4.4 Relative Permittivity and DC Conductivity                   | 84 |
| 4.4.1 Relative Permittivity Measurement                         | 85 |
| 4.4.2 DC Conductivity Measurement                               | 90 |
| 4.5 Simulation of the Electric Field Distribution               | 93 |

| A) S          | Simulation of Electric Field Distribution within Bare Mo              | O93 |
|---------------|-----------------------------------------------------------------------|-----|
| ,             | Simulation of the Electric Field Distribution with the Entricles Type |     |
| Chapter 5     |                                                                       | 97  |
| _             | on of the Dielectric Performance under Lightning                      | -   |
| 5.1 Intro     | duction                                                               | 97  |
| 5.2 Expe      | rimental Test Set-Up and Test Procedure                               | 99  |
| 5.3 LI B      | DV Results and Data Analysis                                          | 105 |
| 5.3.1 B       | DV under Quasi- Uniform Field                                         | 105 |
| 5.3.1         | .1 Determination of the Lightning Withstand Voltage                   | 106 |
| 5.3.2 B       | DV under Non-Uniform Field                                            | 108 |
|               | Determination of the Time to Breakdown & the Acce                     |     |
| 5.3.4 D       | viscussion of the Results                                             | 115 |
| 5.4 Gas       | Generation under lightning Impulse Voltage                            | 117 |
| 5.4.1 D       | GA Experimental Test & Procedure                                      | 118 |
| 5.4.2 D       | GA Test Results and Analysis                                          | 120 |
| Chapter 6     |                                                                       | 123 |
| Deterioration | on Study of the Nanofluid-Cellulose Insulation                        | 123 |
| 6.1 Intro     | duction                                                               | 123 |
| 6.2 labor     | ratory Aging Experiments                                              | 124 |
| 6.2.1 M       | Saterial Used & Thermal Aging Procedure                               | 125 |
| 6.3 Effec     | et of Aging on Cellulosic Insulation Properties                       | 127 |
| 6.3.1 M       | Iechanical Properties                                                 | 128 |
| 6.3.1         | .1 Tensile Strength                                                   | 128 |
| 6.3.2 D       | rielectric Properties                                                 | 130 |
| 6.3.2         | .1 AC Breakdown Voltage                                               | 130 |
| 6.3.2         | .2 Dielectric Dissipation Factor (Tanδ)                               | 132 |
| 6.4 Effec     | et of Aging on Oil Properties                                         | 134 |
| 641A          | C Breakdown Voltage                                                   | 134 |

| 6.4.2 Moisture Content                                                          |
|---------------------------------------------------------------------------------|
| 6.4.3 Kinematic Viscosity                                                       |
| 6.4.3 Total Acidity                                                             |
| 6.4.4 Interfacial Tension                                                       |
| 6.4.5 Color and Appearance 141                                                  |
| 6.4.6 Overall Comparison of Oils Condition143                                   |
| Chapter 7                                                                       |
| Conclusions and Future Work                                                     |
| 7.1 Conclusions                                                                 |
| 7.1.1 Research Domains                                                          |
| 7.1.2 Main Findings                                                             |
| 7.2 Future Work                                                                 |
| Appendix A:                                                                     |
| Modeling of Electrostatic Field                                                 |
| Appendix B:                                                                     |
| Experimental Setup for the Measurement of Pressboard Breakdown Voltage          |
| Appendix C:                                                                     |
| Concept and Experimental Setup for Dissipation Factor of Pressboard Measurement |
| References                                                                      |
| ملخص الا سالة                                                                   |