

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effects of Chitosan Nanoparticles on the Growth Rate and Reproductive Performance of the Nile Tilapia, Oreochromis niloticus

A THESIS

"submitted for the award of Ph.D. Degree of Science in Zoology"

By

Marwa Medhat El-Sayed Mostafa Kamal El-Naggar

M.Sc. in Zoology, 2016

Assistant Lecturer,
Zoology Department, Faculty of Science,
Ain Shams University.

Faculty of Science Ain Shams University

2020

Effects of Chitosan Nanoparticles on the Growth Rate and Reproductive Performance of the Nile Tilapia, Oreochromis niloticus

"A thesis submitted for the award of Ph.D. Degree of Science in Zoology"

By

Marwa Medhat El-Sayed Mostafa Kamal El-Naggar

M.Sc. in Zoology, 2016

UNDER SUPERVISION OF

Prof. Hamza Ahmed El-Shabaka

Professor of Vertebrates and Embryology, Zoology Department, Faculty of Science, Ain Shams University

Prof. Wael Sayed Ibrahim Abou-Elmagd

Professor of Organic Chemistry, Chemistry department, Faculty of Science, Ain Shams University

Prof. Magdy Tawfik Khalil

Professor of Aquatic Ecology, Zoology Department, Faculty of Science, Ain Shams University

Dr. Fawzia Ashour Abd El-Ghafar Abd El-Rahman

Associate Professor of Vertebrates and Comparative Anatomy, Zoology Department, Faculty of Science, Ain Shams University

Dr. Ashraf Suloma Mahmoud

Associate Professor of Fish Nutrition, Department of Animal Production, Faculty of Agriculture, Cairo University

> Faculty of Science Ain Shams University 2020

ACKNOWLEDGMENTS

First of all, I'd like to thank GOD who blessed me with a group of kind supervisors and wonderful friends and colleagues who supported me to complete this work and giving me space.

A bunch of thanks are directed to **Prof. Hamza Ahmed El-Shabaka**, Professor of Vertebrates and Embryology, Zoology Department, Faculty of Science, Ain Shams University, for his encouragement, patience, support and broad-minded supervision throughout the course of the work.

I'd like to express my deep sense of gratitude to **Prof.**Magdy Tawfik Khalil, Professor of Aquatic Ecology, Zoology

Department, Faculty of Science, Ain Shams University, for
his support, guidance, instructions, kind advices, critical
reading of the manuscript, word-processing the manuscript
in his professional manner and transforming the ideas of the
protocol into a valuable thesis.

Sincere thanks to **Prof. Wael Sayed Ibrahim Abou-Elmagd**, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University, for supervising this work. Without his advices and instructions, the chemistry part wouldn't have come to life.

I'd like to extend my deepest appretiation and sincere thanks to **Dr. Fawzia Ashour Abd El-Gaffar Abd El-Rahman**, for suggesting the subject of the work, kind supervision and faithful encouragement.

I'd like to extend my deepest appreciation and sincere thanks to **Dr. Ashraf Suloma Mahmoud**, Associate Professor of Fish Nutrition, Department of Animal Production, Faculty of Agriculture, Cairo University. His support, kind

supervision and faithful encouragement are greatly evaluated.

I'd like to express my deepest appreciation and sincere thanks to **Dr. Rania Ahmed**, Associate Professor of Fish Nutrition, Department of Animal Production, Faculty of Agriculture, Cairo University. Special thanks for her support, encouragement, helpful feedback and providing additional input.

Best regards to **Dr. Sally Salah El- Dín Moustafa**, Lecturer at National Institute and Fisheries, for her effort in the part of physiology.

Special thanks to **Prof. Ashraf Montaser**, the Head of Zoology Department, Faculty of Science, Ain Shams University, for the administrative facilities.

Many thanks to **Prof. Einas H. El-Shatory**, Professor of Microbiology and **Gehad Hussein Taha**, Assistant Lecturer at Department of Microbiology, Faculty of Science, Ain Shams University, for their help and support in bacterial preparation.

Sincere thanks to my mother, my brother and friends for their continuous help and real support throughout my academic life.

Finally, I'd like to dedicate this work to the souls of my grandfather; Samir Higazy EL-Sayed, my father; Medhat El-Naggar and Late Prof. William Rizkalla, Professor of Vertebrates and Comparative Anatomy, Zoology Department, Faculty of Science, Ain Shams University. GOD bless them.

CONTENTS

	Pages
Acknowledgment	
Abstract	I
List of Abbreviations	II
List of Figures	V
List of Tables	XI
1. Introduction and aim of the work	1
2. Historical Review	7
3. Materials and Methods	17
3.1. Extraction of chitin and chitosan from <i>Procambarus clarkii</i> wastes	17
3.1.1. Chitin extraction process	17
3.1.2. Preparation of chitosan	18
3.1.3. Preparation of chitosan nanoparticles	18
3.1.4. Physico-chemical characterization of CS and CSNP	19
3.2. Effect of dietary supplementation of CS and CSNP on growth	
performance of Oreochromis niloticus	23
3.2.1. Experimental design and diets	23
3.2.2. Experimental unit	27
3.2.3. Experimental fish and culture technique	29
3.2.4. Growth performance parameters of O. niloticus fed different	
experimental diets	29
3.2.5. Feed utilization parameters of O. niloticus fed different	
experimental diets	30
3.2.6. Determination of the chemical composition of O. niloticus	
carcass and the experimental diets	31
3.2.7. Water quality measurements	36
3.3. Effect of dietary supplementation of CS and CSNP on the immunity	
and health status of O. niloticus	38
3.3.1. Blood collection and analysis	38
3.3.2. Haematological assessment	39
3.3.3. Phagocytosis and bacteria preparation	41
3.3.4. Antioxidant activity of O. niloticus	41
3.3.5. Determination of the biochemical parameters of O. niloticus	45
3.4. Effect of dietary supplementation of CS and CSNP on the histology	
of selected organs of O. niloticus	49
3.5. Statistical analysis	50

4. Results and Discussion	51
4.1. Physico-chemical characterization of the resultant chitosan and	51
chitosan nanoparticles	
4.1.1. Preliminary identification	51
4.1.2. Fourier-transform infrared spectroscopy	53
4.1.3. Degree of deacetylation of CS	58
4.1.4. Nuclear magnetic resonance spectroscopy	58
4.1.5. Molecular weight of CS.	60
4.1.6. Surface morphology of CS and CSNP	61
4.1.7. Zeta potential of the CSNP	66
4.2. Effect of chitosan and chitosan nanoparticles on growth	69
performance and feed utilization of O. niloticus	
4.2.1. Growth performance parameters of O. niloticus fed different	69
experimental diets	
4.2.2. Feed utilization parameters of O. niloticus fed different	
experimental diets	74
4.2.3. Chemical composition of O. niloticus carcass fed different	
experimental diets	78
4.2.4. Fatty acids profile of the basal experimental diets and O.	84
niloticus carcass	
4.2.5. Water quality profile	92
4.3. Effect of dietary supplementation of chitosan and chitosan	
nanoparticles on the immunity and health status of O. niloticus	95
4.3.1. Hematological indices	95
4.3.2. Phagocytosis	104
4.3.3. Antioxidant activity of O. niloticus	108
4.3.4. The biochemical parameters of <i>O. niloticus</i>	115
4.4. Effect of dietary supplementation of chitosan and chitosan	
nanoparticles on the histology of selected organs of O. niloticus	123
4.4.1. The gills	123
4.4.2. The liver	130
4.4.3. The testes	136
4.4.4. The ovary	141
5. Conclusions and Recommendations	
6. Summary	150
7. References	156
Arabic Summary	200
Arabic Abstract	

ABSTRACT

Chitosan (CS) is drawing a lot of attention and starts to play a significant role in the sustainability of aquaculture. It meets the environmental criteria, as an eco-friendly compound, helps the efficient use of reagents and reduces the possible waste as well. The current study was conducted to evaluate the effect of dietary supplementation of CS and chitosan nanoparticles (CSNP) on the Nile tilapia growth performance, feed utilization growth, health, immune response and histopathology of gonads as well as gills and liver. In the present study, chitosan was extracted from the exoskeleton wastes of *Procambarus clarkii* with degree of deacetylation 87%.

The experimental design was completely randomized with three replicates in a 2 x 3 factorial design; with two different based diets; fishmeal-based diet (FM) and gluten meal-based diet (GM), and with three forms of chitosan (zero-chitosan as a control, CS and CSNP). A total of 270 \boldsymbol{O} . *niloticus* fingerlings (with an average initial body weight of 15.3 \pm 0.08 g) were randomly distributed into six different treatments with a triplicate of 15 fish each. The experiment lasted for 82 days.

Results indicated that the addition of CS and CSNP to GM-based and FM-based diets promoted the innate immunity, health status, antioxidant activity and biochemical parameters of all experimental fish. The growth performance parameters and feed utilization of fish fed GM-based diets were improved by the addition of CSNP. On the contrary, the addition of CS and CSNP affected negatively the growth and utilization of the FM-based diets.

On the other hand, total substitution of fishmeal-based diet by gluten-meal-based diet affected the histological structure of both the gills and liver. However, CSNP fortification to GM-based diets improved the architecture of both of them. Concerning the histopathological studies of ovaries and testes, neither the protein source nor the chitosan forms affected the reproductive status or stages of *O. niloticus*. CSNP increased the omega 3 level in all experimental fish that will make it safe for human consumption.

So, the present study recommends addition of supplementary CSNP to the plant-based protein diet of the Nile tilapia for better growth performance, health and disease resistance, as well as augmentation of nutritional value for fish, as well as human being.

Key words: *Oreochromis niloticus*, Nile Tilapia, Chitosan Nanoparticles, Gluten, Fishmeal, Growth Performance, Immunity.

I

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

Abbreviation	Meaning
ALT	Alanine aminotransferase
ANOVA	Analysis of variance
AST	Aspartate aminotranseferase
At.fo	Atretic follicle
ATP	Adinosine triphosphate
B.f	Biological filter
Bl.b	Balbini's body
Bs.m	Basement membrane
BWG	Body weight gain
CAT	Catalase
Ce.v	Central vein
Cg	Congestion
CH ₃ -CO	Acetyl group
Ch.nu.oc	Chromatin nucleolar oocyte
CO	Cholesterol oxidase
CS	Chitosan
CSNP	Chitosan nanoparticles
CT	Collecting tank
Су	Cyst
DDA	Degree of deacetylation
D.p.c	Degenerated pavement cell
DTNB	Ellman's reagent
E	Edema
EDTA	Ethylenediamine tetraacetic acid
Ep. Li	Epithelial lifting
FCR	Feed Conversion Ratio
FI	Feed intake
FMCNP	Fishmeal supplemented with chitosan nanoparticles
FMC	Fishmeal supplemented with chitosan
FTIR	Fourtier-transform infrared
G.F	Gill filament
G.l	Gill lamella
GM	Gluten meal

LIST OF ABBREVIATIONS

GMCSNP Gluten meal supplemented with chitosan nanoparticles

GMCS Gluten meal supplemented with chitosan

GPx Glutathione peroxidase GR Glutathione reductase

GSH Glutathione
H Hepatocyte
Hct Hematocrit

Hd Head

In.se Interlobular septum

K.c Kupffer cell

L.vc Lamellar vacuolation

Li.d Lipid depletion

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MCV Mean corpuscular volume

MF Mechanical filter

N Nucleus

NAD Nicotinamide adenine dinucleotide

NADPH Nicotinamide adenine dinucleotide phosphate

Na OCl Sodium hypochlorite

Nc Necrosis

NH₃ Un-ionized form of ammonia

NH₄⁺ Ionized ammonia

NH₃-N Total ammonia nitrogen Ns.ot Nucleolar outpocketing

Nu Nucleolus
Og Oogonium
Op Ooplasm

PA Phagocytic activity

P.c Pavement cell

PER Protein efficiency ratio

PI Phagocytic index

Pi.c Pillar cell
Pi.ca Pillar capillary

Pnu.oc Perinucleolar oocyte