

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

كليه العلوم - قسم الكيمياء

Infiltration of Nile River Water into Ground Water Investigation and Modelling of Hydraulic and Geochemical Process during Bank Filtration

Thesis Submitted by

Mohamed Mossad Ahmed Amer

B.Sc. (Chemistry) 2005

M.Sc. (Chemistry) 2016

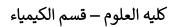
For the requirement of Ph.D. Degree of Science in Chemistry

First Prof. Dr. Eglal Myriam Raymond Souaya

Professor of Analytical Chemistry-Faculty of Science, Ain Shams University.

Dr. Ali Mahmoud Abdullah

Technical Support Manager TSM Holding company for Water and Wastewater, Quality Manager Water Pollution and Marine Environment Lab (WPMEL).


To

Department of Chemistry

Faculty of Science, Ain Shams University

2022

Infiltration of Nile River Water into Ground Water Investigation and Modelling of Hydraulic and Geochemical Process during Bank Filtration

By

Mohamed Mossad Ahmed Amer

Thesis Advisors	Approved
Prof. Dr. Eglal Myriam Raymond Soud Professor of Analytical Chemistry Faculty of So	•
Dr. Ali Mahmoud Abdullah Technical Support Manager TSM Holding com	nany for Water and Wastewate

Quality Manager Water Pollution and Marine Environment Lab (WPMEL)

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Abstract

In natural environments, riverbank filtration is accomplished by decreasing the groundwater stream below the surface water level, either through the use of hydraulic barriers such as a bank of channels or through groundwater abstraction at pumping wells. A study has also been conducted on the mixing of infiltrated river water with groundwater at the pumping outlet well and the retention time of the bank filtrate, which has been identified as critical parameters that influence the efficiency of riverbank filtration and the quality of the Water quality is improved significantly when organic micropollutants (OMPs) are removed from surface river water using riverbank filtration (RBF) technology. This technique produces highquality water at a reasonable cost. El-Qurain (Conventional Water Treatment Plant) and El Muzainin RBF plants were investigated to learn more about the presence of OMP's (pesticides, herbicides, and polyaromatic hydrocarbons) in the water. Both plants are geographically adjacent to one another and the El Saadia canal. The study concluded that the RBF water production technique was more effective than the traditional treatment for the 17 OMPs (5 polyaromatic hydrocarbons (PAHs), 6 herbicides, 3 pesticides, and 3 insecticides) were investigated in the El Saadia canal's raw surface water. To investigate and evaluate the treatment and removal of 17 OMPs from the El Saadia canal water source in the laboratory, batch experiments were carried out using fine silica sand at different temperatures (20, 25, and 30 °C). Additionally, experiments were carried out to investigate and evaluate the efficacy of the riverbank soil's biodegradation and adsorption process in reducing most cases, high-hydrophobicity chemicals such pendimethalin, bisphenol A, simetryn, diazinon, and 5 of the PAHs (naphthalenediphenyl acetaldehyde, anthracenediphenyl acetaldehyde, phenanthrene, pyrene, and fluoranthene) are highly adsorbed onto sand grains (removal percentage >90 percent). The findings demonstrated that hydrophobic chemical compounds are cleared and removed during RBF, regardless of the environmental variables under consideration. The first goal of the study was to learn more about the presence of iron, manganese, microbiological parameters, and OMPs (disinfection byproducts, pesticides, herbicides, and polyaromatic hydrocarbons) at Al-Qurain (Conventional Water Treatment Plant), Al Muzainin RBF Plants, and groundwater wells, all of which are located near the El Saadia Canal. The second goal of the study was to learn more about the presence of iron. According to the water quality results from the RBF water, the water quality was excellent, particularly in terms of Fe and Mn values, as well as microbiological parameters; the FPs of disinfection by-product (THMs, HAAs, and HANs) for Al Muzainin RBF provided more significant reductions than the Al Qurian water Plant; and the 17 OMPs (5 polyaromatic hydrocarbons (PAHs), 6 herbicides, 3 pesticides, and 3 Second, using batch experiments with fine silica sand at different temperatures (20, 25, and 30 degrees Celsius), the researchers investigated and evaluated the treatment and removal of 17 organic pollutants from the El Saadia canal water source, as well as the effectiveness of the riverbank soil's biodegradation and adsorption process in the reduction of OMPs. According to the findings, hydrophobic chemical compounds are destroyed and removed during RBF, independent of the environmental circumstances (removal percentage >90 percent). Developing a modeling system for biodegrading organic matter traveling through the riverbed was the study's third objective, and the findings revealed that the correlation coefficient between DOC measured and DOC calculated washigh (r was 0.94).

Keywords: River bank filtration water quality, Dynamic model, OMPs, DBPs, Pesticides, Herbicides, PAHs, Sharkyia Governorate, and Egypt.

Supervisors:

Prof. Dr. Eglal Myriam Raymond Souaya

Dr. Ali Mahmoud Abdullah

ACKNOWLEDGMENT

Many deep and sincere thanks are to **Prof. Dr. Eglal Rimon Souaya**, professor of Inorganic Chemistry, Faculty of Science, Ain Shams University, for her interest, continuous encouragement, kind contribution and advice.

Also, I am deeply indebted to **Dr. Ali Mahmoud Abdullah**, for his supervision of work, his valuable and enlightened guidance, as well as his fruitful discussion all along the course of work.

I am deeply thankful to all Members of the Reference Laboratory for Drinking Water.

Finally, I would like to express my deepest thanks and profound gratitude to my **Family** for their love, never-ending support and inspiration they gave me.

First and not least, thanks and praise go always and never unending to ALLAH, for giving me strength and patience to complete this work.

LIST OF ABBERVIATION

No.	Abbreviations	Meaning
1	DBPs	Disinfectant By-Products
2	THMs	Trihalomethanes
3	HAAs	Haloacetic Acids
4	TOC	Total Organic Carbon
5	WHO	World Health Organization
6	km	Kilometer
7	TDS	Total dissolved solids
8	NOM	Natural Organic Material
9	HAAs	Haloacetic Acids
10	WTPs	Water Treatment Plants
11	NOM	Natural Organic Material
12	DOC	Dissolved Organic Carbon
13	UV	Ultraviolet Irradiation
14	HANs	Haloacetonitriles
15	EPA	Environmental Protection Agency
16	OSE	On-Site Electrochlorination
17	DCAA	Dichloro-Acetic Acid
18	TCAA	Trichloro-Acetic Acid
19	mm	Millimeter
20	μm	micrometer
21	MTBE	methyl-tert-butyl-ether
22	min	Minute
23	μL	Micro Littre
24	μg/l	Microgram per Littre
25	mg/l	Milligram per Littre
26	IC	Ion chromatography
27	BDCM	bromodichloromethane
28	CHCl ₃	chloroform
29	CHBr ₃	bromoform
30	DBCM	dibromochloromethane
31	ppm	Part per million
32	GC	Gas chromatography
33	BF	Bank Filtration
34	EfOM	The fate of effluent organic matter
35	HCWW	Water and Wastewater Holding Company
36	RBF	River Bank Filtration
37	m ³	cubic meter

I

38	BM^3	Billion cubic meter
39	AHD	Aswan High Dam
40	COD	Chemical Oxygen Demand
41	BOD	Biochemical Oxygen Demand
42	DO	Dissolved Oxygen
43	OC	OrganoChlorine
44	OP	OrganoPhosphorus
45	MCL	Maximum Contaminant Level
46	PAH	Poly Aromatic Hydrocarbon

LIST OF TABLES

Table No.	Table Name	Page No.	
Table 2.1	OMPs studied and their properties	43	
Table 3.1	Methods of chemical analysis, sample preservation,	68	
	handling, and storage		
Table 3.2	Raw water characteristics	83	
Table 4.1	Dissolved organic matter prediction through river filtration	88	
	The water-quality monitoring analysis for El Saadia canal,		
Table 4.2	Al Muzainin RBF, groundwater well, and Al Qurian water Plant during 2018	90	
Table 4.3	Average water quality parameters at 2018 of El Saadia canal, Al Muzainin RBF, and groundwater well	95	
Table 4.4	TOC and THMs at 2018 for Al Muzainin RBF and Al Qurian water Plant	99	
Table 4.5	HAAS and HANs at 2018 for Al Muzainin RBF	101	
Table 4.6	HAAS and HANs at 2018 Al Qurian water Plant	102	
Table 4.7	TOC and THMs reduction of Al Qurian water Plant and Al Muzainin RBF	103	
	average concentration in Al Qurian water Plant and		
Table 4.8	reduction ratio upon Al Muzainin RBF for HAAs and HANs	104	
	El saadia canal water quality (TOC, Pesticides,		
Table 4.9	Herbicides and Poly Aromatic hydrocarbons observations)	106	
	Al Qurian water Plant water production quality		
Table 4.10	(TOC, Pesticides, Herbicides and Poly Aromatic	108	
	hydrocarbons)		
	Al Muzainin RBF water production quality (TOC,		
Table 4.11	Pesticides, Herbicides and Poly Aromatic	109	
	hydrocarbons)		
= 11 440	Al Qurian water Plant and Al Muzainin RBF reduction		
Table 4.12	ratio for TOC, Pesticides, Herbicides and Poly Aromatic hydrocarbon	110	
Table 4.13	effect of environmental conditions on OMPs removal %	117	