

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

UPGRADING WATER TREATMENT PLANTS BY USING DISSOLVED AIR FLOTATION

A Thesis
Submitted to the Faculty of Engineering
Ain Shames University for the Fulfillment
of the Requirement of M.Sc. Degree
In Civil Engineering

Prepared by ENG. NADEEN SAMEH AHMED SAEED MOSTAFA

B.Sc. in Civil Engineering, July 2014 Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Supervisors

PROF. DR. MOHAMED EL HOSSEINY ABDEL RAHMAN EL NADI,

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

ASS. PROF. Dr. MOHAMED SOBHY ABDEL RAHMAN,

Assistant professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

ASS. PROF. Dr. NANY ALI HASSAN NASR,

Assistant professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, EGYPT

2019

UPGRADING WATER TREATMENT PLANTS BY USING DISSOLVED AIR FLOTATION

A Thesis For

The M.Sc. Degree in Civil Engineering (SANITARY & ENVIRONMENTAL ENGINEERING)

hv

ENG. NADEEN SAMEH AHMED SAEED MOSTAFA

B.Sc. in Civil Engineering, July 2014 Faculty of Engineering – Ain Shams University – Cairo, EGYPT

THESIS APPROVAL

EXAMINERS COMMITTEE SIGNATURE

Prof. Dr. Osama Fathy Mahmoud	
Professor of Sanitary Engineering & Head of Civil Eng. Dept.	
Faculty of Engineering, Al Azhar University	
Prof. Dr. Tarek Ismail Sabry	
Professor of Sanitary & Environmental Engineering	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Mohamed El Hosseiny El Nadi	
Professor of Sanitary & Environmental Engineering & Head of	
Public Works Dept., Faculty of Engineering, Ain Shams University	

Date: - ---/2019

Dedication

This thesis is lovingly dedicated to all the close, special and beautiful people in my life.

A special dedication to

THE MEMORY OF MY LATE FATHER

and to

MY SUPPORTIVE MOTHER

and to

MY WONDERFUL BROTHER

and finally special dedication to

MY LOVELY HUSBAND

For encouraging me to complete this work and for always being there for me...

Also, to

MY LOVELY DOUGHTER

May it could be her candle for future

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Public Works, Faculty of Engineering, Ain Shams University, from February 2016 to December 2019.

No part of the thesis has been submitted for a degree or a qualification at any other University or Institution.

The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others

Date: - ---/-- /2019

Signature: - -----

Name: - NADEEN SAMEH AHMED SAEED MOSTAFA

<u>ACKNOWLEDGMENTS</u>

First, thanks are all direct to Allah, for blessing this work until it has reached its end, as a part of generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of **Professor Dr. Mohamed El Hossieny El Nadi**, Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, this thesis wouldn't have been possible unless his great efforts, meticulous revision, scientific guidance and tremendous support.

I am profoundly grateful to **Dr. Mohamed Sobhy Abdel Rahman**, Associate Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for his close and kind supervision, constructive criticism, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort he gave me.

I would like to thank **Dr. Nany Ali Hassan Nasr**, Assistant professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for her sincere help and guidance, true encouragement and keen interest in the progress and accomplishment of this work. I am thankful for all the time and effort she gave me

Last but not least, sincere thanks to the staff and personnel of Sanitary Engineering Section, Faculty of Engineering, Ain Shams University, **especially Tech. Khalid Abdel Latif** for facilities, encouragement and cooperation during the preparation of this study

ABSTRACT

Name: NADEEN SAMEH AHMED SAEED MOSTAFA

Title: "UPGRADING WATER TREATMENT PLANTS BY USING DISSOLVED AIR FLOTATION"

Faculty: Faculty of Engineering, Ain Shams University.

Specialty: Civil Eng., Public Works, Sanitary & Environmental Eng.

Abstract: -

Due to the rate increase for potable water need, the general project trend is the vertical expansions for water treatment plants instead of the horizontal ones. By upgrading the existing plants using new technology to reach the maximum capacity and conserve the water quality parameters as the Egyptian Code states. As the benefits of plant upgrading are no new land is needed also, low cost solution, comparing with the construction of new water treatment.

This study aims to upgrade the existing water treatment plants using dissolved air floatation system, in order to reach the maximum possible capacity using several possible scenarios without adding major civil works.

The study shows that, the scenario which involves DAF technology then sedimentation and filtration has the best removal efficiency because it has three treatment phases. The use of one treatment phase from floatation or sedimentation followed by filtration achieved lower efficiency. At last direct filtration, considering low removal efficiencies due to the high rate of filtration which allowed the suspended solids to escape.

For the application upon Al Ameriyah water treatment plant, the first proposal with five combined tanks, two tube settler and one filter tank is the most convenient proposal to be achieved. Since it has high technical evaluation with the least estimated cost 85,769,200 LE. The use of DAF technology combined with sedimentation gives the chance to increase the existing plant capacity from 520000 m³/day to 864815 m³/day with percent increase equals 66.31% which is a convenient technical and financial solution.

KEY WORDS

Water Treatment, Dissolved air flotation, Combined tank, Application on Al Ameriyah, Technical and financial evaluation.

SUPERVISORS

Prof. Dr. Mohamed El Hosseiny El Nadi, Associate Prof. Dr. Mohamed Sobhy Abdel Rahman, Associate Prof. Dr. Nany Aly Hassan Nasr

TABLE OF CONTENTS

COVE	R	Page
APPRO	OVAL COMMITTEE	ii
DEDIC	CATION	iii
STATI	EMENT	iv
ACKN	OWLEDGMENTS	V
ABSTI	RACT	vi
TABL	E OF CONTENTS	vii
LIST (OF FIGURES	X
LIST (OF TABLES	xii
CHAP	TER I : INTRODUCTION	
1-1	BACKGROUND	
	OBJECTIVE	
1-3	SCOPE OF WORK	
1-3-1	THEORETICAL WORK	
1-3-1-1	DATA COLLECTION	
1-3-1-2	RESULTS, ANALYSIS AND DISCCUSION	
1-3-1-3	THESIS PREPARATION	
1-3-2	EXPERIMINTAL WORK	
	THESIS ORGANIZATION	
1-4-1	CHAPTER I: INTRODUCTION	
1-4-2	CHAPTER II: LITERATURE REVIEW	
1-4-3	CHAPTER III: MATERIAL AND METHODS	
1-4-4	CHAPTER IV: RESULTS	
1-4-5	CHAPTER V: DISCUSSION	
1-4-6	CHAPTER VI: CONCLUSIONS	
CHAP	TER II : LITERATURE REVIEW	
2.1	INTRODUCTION	
2.2	METHODS OF PLANET UPGRADING	
2.2.1	OPERATING EXISTING UNIT WITH MAXIMUM	
PROD	UCTIVITY	
	INCREASING PUMPING & PIPING CAPACITIES	
2.2.3	BUILDING NEW UNITS	
2.2.4	MODIFYING THE EXISTING UNITS	

- 2.2.4.1 SEDIMENTATION UNIT
- 2.2.4.2 FLOATATION UNIT
- 2.2.4.3 FILTRATION UNIT
- 2.2.4.4 UNIT COMBINATION
- 2.3 FLOATATION PROCESS
- 2.3.1 THEORY OF FLOATATION
- 2.3.2 MECHANISM OF FLOATATION
- 2.3.3 COMPARISON WITH SEDIMENTATION
- 2.3.4 APPLICATION ON FLOATATION
- 2.3.5 TYPES OF FLOATATION PROCESS
- 2.3.5.1 ELECTRO OR ELECTROLYTIC FLOATATION
- 2.3.5.2 DISPERSED AIR FLOATATION
- 2.3.5.3 DISSOLVED AIR FLOATATION
- 2.3.6 FACTORS AFFECTING FLOATATION PROCESS
- 2.3.6.1 SOLUBILITY OF AIR
- **2.3.6.2 BUBBLE SIZE**
- **2.3.6.3 RISE RATE**
- 2.3.6.4 AIR/SOLIDS RATIO
- **2.3.6.5 AIR SUPPLY**
- **2.3.6.6 TANK SHAPE**
- 2.3.7 FACTORS AFFECTING DAF EFFECIENCY
- 2.3.7.1 COAGULATION
- 2.3.7.2 FLOCCULATION
- 2.3.7.3 QUANTITY OF AIR REQUIRED FOR FLOATATION
- 2.3.7.4 FLOATED SLUDGE REMOVAL
- 2.3.7.5 BUBBLE SIZE DISTRIBUTION AND DEGREE OF DISPERSION
- 2.3.7.6 HYDRAULIC DESIGN OF THE FLOATATION CHAMBER
- 2.3.7.7 RETENTION TIME
- 2.3.7.8 CONCENTRATION AND SIZE OF SOLIDS
- **2.3.7.9 TEMPERATURE**
- 2.4 APPLICATIONS ON UPGRADING AROUND WORLD
- 2.5 APPLICATIONS IN EGYPT
- 2.6 BENEFITS OF PLANET UPGRADING

CHAPTER III: MATERIALS AND METHODS

3-1 STUDY LOCATION

- 3-2 LAB SCALE WORK
- 3-2-1 SCENARIOS OF SOLUTIONS
- 3-2-2 LAB SCALE PIOLT
- 3-2-2-1 PILOT DESIGN CRITERIA
- a. ALUM SOLUTION TANK
- b. FLASH MIXING TANK
- c. FLOCCULATION TANK
- d. DISSOLVED AIR FLOTATION TANK
- e. SEDIMENTATION TANK
- f. FILTER TANK
- 3-2-2-2 THE PILOT ASSEMPLY
- a. SOURCE TANK
- b. ALUM SOLUTION TANK
- c. FLASH MIXING TANK
- d. FLOCCULATION TANK
- e. DISSOLVED AIR FLOTATION TANK
- f. SEDIMENTATION TANK
- g. FILTER TANK
- 3-3 OPERATION PROGRAM
- 3-3-1 SYSTEM PROCESS
- a-3-2 PILOT OPERATION PROCEDURE
- a-4 SAMPLING
- a-5 MEASUREMENTS ANALYSIS
- 3-5-1 TSS (TOTAL SUSPENDED SOLIDS)
- a-5-2 TEMPERATURE
- a-5-3 PH
- a-6 PROPOSED PLANT MODIFICATION
- 3-6-1 DESCRIPTION OF AL AMERIYAH WTP
- a-6-2 PROPOSALS FOR PLANT MODIFICATION
- 3-6-2-1 FIRST PROPOSAL
- 3-6-2-2 SECOND PROPOSAL
- 3-6-2-3 THIRD PROPOSAL
- 3-6-2-4 FOURTH PROPOSAL
- 3-6-2-5 FIFTH PROPOSAL
- 3-6-2-6 SIXTH PROPOSAL

CHAPTER IV: RESULTS

4-1 GENERAL

- 4-2 EXPERIMENTS RESULTS
- 4-2-1 RESULTS OF FIRST RUN
- 4-2-1-1 FIRST RUN WITHOUT CHEMICAL ADDITION
- 4-2-1-2 FIRST RUN WITH CHEMICAL ADDITION
- 4-2-2 RESULTS OF SECOND RUN
- 4-2-3 RESULTS OF THIRD RUN
- 4-3 APPLICATION ON AL AMERYIAH WTP
- 4-3-1 FIRST PROPOSAL
- 4-3-1-1 COLLECTION WORKS
- 4-3-1-2 TREATMENT WORKS
- a. **COMBINED TANK**
- b. TUBE SETTLER SEDIMENTATION TANK
- c. FILTER TANK
- d. HIGH LIFT PUMP
- 4-3-2 SECOND PROPOSAL
- 4-3-2-1 COLLECTION WORKS
- 4-3-2-2 TREATMENT WORKS
- a. **COMBINED TANK**
- b. FILTER TANK
- c. HIGH LIFT PUMP
- 4-3-3 THIRD PROPOSAL
- 4-3-3-1 COLLECTION WORKS
- 4-3-3-2 TREATMENT WORKS
- a. FLOCCULATION TANK
- b. DAF TANK
- c. TUBE SETTLER SEDIMENTATION TANK
- d. FILTER TANK
- e. HIGH LIFT PUMP
- 4-3-4 FOURTH PROPOSAL
- 4-3-4-1 COLLECTION WORKS
- 4-3-4-2 TREATMENT WORKS
- a. COMBINED TANK
- b. FILTER TANK
- c. HIGH LIFT PUMP
- 4-3-5 FIFTH PROPOSAL
- 4-3-5-1 COLLECTION WORKS
- 4-3-5-2 TREATMENT WORKS
- a. FLOCCULATION TANK

- b. DAF TANK
- c. FILTER TANK
- d. HIGH LIFT PUMP

CHAPTER V: DISCUSSION

- 5-1 STUDY OVERVIEW
- 5-2 DISCUSSIONS OF EXPERIMENTAL WORK
- 5-2-1 FIRST RUN RESULTS DISCUSSION
- 5-2-1-1 FIRST RUN WITHOUT CHEMICAL ADDITION
- 5-2-1-2 FIRST RUN WITH CHEMICAL ADDITION
- 5-2-2 SECOND RUN RESULTS DISCUSSION
- 5-2-3 THIRD RUN RESULTS DISCUSSION
- 5-3 DISCUSSIONS OF APPLICATION ON EXISTING

WTP

- 5-3-1 FIRST PROPOSAL DISCUSSION
- 5-3-1-1 TECHNICAL DISCUSSION
- 5-3-1-2 FINANCIAL DISCUSSION
- 5-3-2 SECOND PROPOSAL DISCUSSION
- 5-3-2-1 TECHNICAL DISCUSSION
- 5-3-2-2 FINANCIAL DISCUSSION
- 5-3-3 THIRD PROPOSAL DISCUSSION
- 5-3-3-1 TECHNICAL DISCUSSION
- 5-3-3-2 FINANCIAL DISCUSSION
- 5-4 PROPOSALS COMPARISON
- 5-4-1 PROPOSALS TECHNICAL COMPARISON
- 5-4-2 PROPOSALS FINANCIAL COMPARISON
- 5-4-3 PROPOSALS TOTAL COMPARISON

CHAPTER VI: CONCLUSION

- 6-1 INTRODUCTION
- 6-2 CONCLUSION OF STUDY
- 6-3 RECOMMENDATIONS
- 6-4 FURTHER WORK

REFERENCESES

LIST OF FIGURES

Figure		Page
CHAPTER II:	LITERATURE REVIEW	
Figure (2/1)	Modified Sedimentation With Floatation Addition	
Figure (2/2)	Modified Filter With Floatation Addition	
Figure (2/3)	Flo-Filter Pilot Unit	
Figure (2/4)	Electro-Floatation	
Figure (2/5)	Foam Floatation	
Figure (2/6)	Forth Floatation	
Figure (2/7)	SCHEMATIC DIAGRAM OF DAF SYSTEM	
Figure (2/8)	Full-Flow Pressure Floatation	
Figure Error!	Split-Flow Pressure Floatation	
No text of	•	
specified style		
in		
document.(2/9		
)		
Figure Error!		
No text of		
specified style	Danvela Elevy Pressure Electrica	
in	Recycle-Flow Pressure Floatation	
document.(2/1		
0)		
Figure (2/11)	Solubility Of Air In Water	
Figure (2/12)	Solubility Of Air In Water	
Figure (2/13)	Solubility Of Gases In Water As A Function Of Pressure	
Figure (2/14)	Bubble-Size Distribution Measured In Three Different	
	Aeration Systems	
Figure (2/15)	Rise Rate Of Air Bubbles As A Function Of Bubble Size	
Figure (2/16)	Rise Rate Of Larger Bubbles	
Figure (2/17)	Packed Saturator	
Figure (2/18)	Unpacked Saturator	
Figure (2/19)	Introducing Air At The Throat Of A Venture	
Figure (2/20)	Injecting Air Into The Suction Line Before The	
	Pressurizing Pump	
Figure (2/21)	Relation Between Flow Rate And Microbubble Volume	