

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

BEHAVIOR OF ULTRA HIGH PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS SUBJECTED TO ECCENTRIC COMPRESSION LOAD

A Thesis
Submitted in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE IN
STRUCTURAL ENGINEERING

By NEDAA TAHER ABDEL HAMID YOUSSEF

B.Sc. in Civil Engineering, June 2013 – Ain Shams University

Supervised by

Prof. Dr. Ayman Hussein Hosny Khalil

Professor of Reinforced Concrete Structures
Department of Structural Engineering
Faculty of Engineering, Ain Shams University
Cairo - Egypt

Assoc, Prof. Dr. Sherif Kamal Elwan

Associate Professor
Department of Civil Engineering
The Higher Institute of Engineering at ElShorouk
Cairo - Egypt

Assoc. Prof. Dr. Enas Ahmed Khattab

Associate Professor
Building Materials and Quality Control
Research Institute
Housing & Building National Research Center
Cairo - Egypt

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

BEHAVIOR OF ULTRA HIGH PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS SUBJECTED TO ECCENTRIC COMPRESSION LOAD

By NEDAA TAHER ABDEL HAMID YOUSSEF

B.Sc. in Civil Engineering, June 2013 – Ain Shams University

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Ahmed Abdel Fattah Mahmoud Professor of Reinforced Concrete Structures	
Civil Engineering Department – Faculty of Engineering at Shoul	ora, Benha University
Prof. Dr. Ahmed Hassan Ghallab	
Professor of Reinforced Concrete Structures	
Structural Engineering Department – Faculty of Engineering, Ai	n Shams University
Prof. Dr. Ayman Hussein Hosny Khalil Professor of Reinforced Concrete Structures Structural Engineering Department – Faculty of Engineering, Ai	n Shams University
Assoc. Prof. Dr. Sherif Kamal Elwan	
Associate Professor – Civil Engineering Department	
The Higher Institute of Engineering at El-Shorouk	

RESEARCHER DATA

Name : Nedaa Taher Abdel Hamid Youssef

Date of birth : 1 April 1991

Place of birth : Dakahlia, Egypt

Academic degree : B.Sc. in Civil Engineering

Major : Structural Engineering

University : Ain Shams University

Date : June 2013

STATEMENT

This thesis is submitted as partial fulfillment of the requirements for the

Degree of Master in Science in Civil Engineering (Structural), Faculty of

Engineering, Ain Shams University.

No part of the thesis has been submitted for a degree or a qualification at any

other University or Institution.

Date:

Name: Nedaa Taher Youssef

Signature:

i

ACKNOWLEDGEMENT

First and foremost, all the praise and thanks to Allah the Almighty, for graces and blessings he granted to me to accomplish this research, and all through my life.

I would like to express my great appreciation, gratitude and thanks to my supervisors; Prof. Dr. Ayman Hussein Hosny Khalil, Assoc. Prof. Dr. Sherif Kamal Elwan, and Assoc. Prof. Dr. Enas Ahmed Khattab, for their great effort for supervision, guidance, help and encouragement in all phases of this work.

I would like to record my special appreciation and gratitude to Assoc. Prof. Dr. Yasser Sadek El-Saie, for his motivation and encouragement, which always supports me all of the time.

I make all the meanings of love, gratitude and appreciation to my family, for their continuous spiritual and moral support, love, help, encouragement. I owe them more than I can express by words.

Finally, my deep thanks to my friends for their help, encouragement, love and support. It is hard to imagine that I could complete this work without them.

DEDICATION

To my father, mother and brothers

ABSTRACT

Novel developments in materials field led to the evolution of ultra high performance fiber reinforced concretes (UHPFRC), which is a material that provides superb mechanical properties and enhanced durability comparing with the traditional concrete. For its excellent properties, it has a high potential to be widely used in various structures from the sustainability and economically viewpoints.

The thesis presents a study for the behavior of eccentric short columns manufactured with UHPFRC. The experimental program was performed on seven UHPFRC columns until failure. Variables included the eccentricity to thickness ratio, the longitudinal steel reinforcement and stirrups reinforcement ratios. All columns had square cross sections with dimensions of 150 mm x 150 mm. Four columns were prepared to study the change of eccentricity to thickness ratio, two columns to study the change in longitudinal steel reinforcement ratio, and one column to study the effect of changing the stirrups reinforcement ratios. Failure modes and crack patterns, deformations and strains' behavior were recorded and compared.

The results demonstrated that the three mentioned variables significantly affect the ultimate load capacity of the UHPFRC columns. Theoretical prediction of the columns' ultimate load capacities according to different international codes were used to evaluate the experimental results.

Keywords: Ultra High Performance Concrete, Fiber Reinforced Concrete, Eccentric Loads, Short Columns, Load Capacity, Polypropylene Fibers.

TABLE OF CONTENTS

			Page
STA	ATEMEN	Т	i
		EDGEMENT	
		N	
		CONTENT	
		GURES	
		BLES	
SYI	MBOLS .		XV
СH	APTER	(1): INTRODUCTION	
		AL	1
		ΓIVES AND METHODOLOGY	
1.2		Phase One	
		Phase Two	
		Phase Three	
1.3		ORGANIZATION	
СH	ADTED	(2): LITERATURE REVIEW	
		AL	5
		C HISTORY AND DEVELOPMENT	
		IALS	
2.5		Cement	
	2.3.2		
		Fillers	
		Additives	
		Water to binder ratio	_
		Superplasticizers	
		Fibers	
2.4		RE DESIGN	
		G TECHNIQUES	
		AL CHARACTERISTICS OF UHPFRC	
	2.6.1	Compressive Strength	24

		2.6.1.1 UHPC under axial compressive loads	24
		2.6.1.2 UHPC under eccentric compressive loads	25
	2.6.2	Tensile and Flexural Strength	27
	2.6.3	Shear and Torsional Strength	28
	2.6.4	Lateral and Impact Resistance	29
	2.6.5	Durability	31
2.7	APPLIC	CATIONS OF UHPFRC	32
	2.7.1	Bridges	32
	2.7.2	Buildings	33
	2.7.3	Strengthening and Rehabilitation	34
	2.7.4	Special Structures	35
		Wear Protection	
	2.7.6	Offshore	36
	2.7.7	Security Industry	36
	2.7.8	· · · · · · · · · · · · · · · · · · ·	
	2.7.9	Industrial floors and pavements	37
		(3): THE EXPERIMENTAL WORK	
3.1	GENER	AL	
3.1	GENER MATER	ALIALS	38
3.1	GENER MATER 3.2.1	ALIALSCement	38 39
3.1	GENER MATER 3.2.1	AL IALS Cement Aggregates	38 39 40
3.1	GENER MATER 3.2.1	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates	38 39 40 41
3.1	GENER MATER 3.2.1 3.2.2	AL	38 40 41
3.1	GENER MATER 3.2.1 3.2.2	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers	38 40 41 42
3.1	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives	38 40 41 42 42
3.1	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water	38 40 41 42 42 43
3.1	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers	38 40 41 42 42 43 45
3.1	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers	38 40 41 42 42 45 45
3.1	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers Steel Reinforcement	38 40 41 42 42 45 45 46
3.1	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers Steel Reinforcement 3.2.8.1 Longitudinal Reinforcement	3840414243454546
3.1 3.2	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers Steel Reinforcement 3.2.8.1 Longitudinal Reinforcement 3.2.8.2 Shear Reinforcement	384041424345454646
3.1 3.2	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 MIXTU	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers Steel Reinforcement 3.2.8.1 Longitudinal Reinforcement 3.2.8.2 Shear Reinforcement RE DESIGN	38404142434546464646
3.1 3.2 3.3 3.4	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 MIXTU CURING	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers Steel Reinforcement 3.2.8.1 Longitudinal Reinforcement 3.2.8.2 Shear Reinforcement RE DESIGN	383940414243454646464646
3.1 3.2 3.3 3.4 3.5	GENER MATER 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 MIXTU CURING SPECIM	AL IALS Cement Aggregates 3.2.2.1 Coarse aggregates 3.2.2.2 Fine aggregates Fillers Additives Mixing water Superplasticizers Fibers Steel Reinforcement 3.2.8.1 Longitudinal Reinforcement 3.2.8.2 Shear Reinforcement RE DESIGN	384041424345464646464646

3.7	MEASU	IRING IN	STRUMENTS	61
3.8	TEST P	ROCEDU	JRE	. 64
			RIMENTAL RESULTS AND DISCUSSION	
4.2			L RESULTS	
	4.2.1	_	en S1	
			Mode of failure	
			Strain behavior	
			Specimen's deformations	
	4.2.2		n S2	
			Mode of failure	
			Strain behavior	
		4.2.2.3	Specimen's deformations	75
	4.2.3		n S3	
		4.2.3.1	Mode of failure	76
		4.2.3.2	Strain behavior	78
		4.2.3.3	Specimen's deformations	80
	4.2.4	Specime	n S4	80
		4.2.4.1	Mode of failure	81
		4.2.4.2	Strain behavior	83
		4.2.4.3	Specimen's deformations	84
	4.2.5	Specime	n S5	85
		4.2.5.1	Mode of failure	85
		4.2.5.2	Strain behavior	87
		4.2.5.3	Specimen's deformations	89
	4.2.6	Specime	en S6	89
		4.2.6.1	Mode of failure	90
		4.2.6.2	Strain behavior	92
		4.2.6.3	Specimen's deformations	93
	4.2.7		n S7	
			Mode of failure	
			Strain behavior	
			Specimen's deformations	
4.3	DISCUS		·····	
	4.3.1	Effect of	eccentricity loading ratio	101

	4.3.2	Effect of steel reinforcement ratio	103
		Effect of stirrups ratio	
		P-delta effect	
CH	APTER ((5): THEORETICAL INVESTIGATION AND	
CO	MPARIS	SON	
5.1	GENER	AL	109
5.2	ULTIM	ATE LOAD CAPACITY FOR COLUMNS IN	
INT	ERNATI	ONAL STANDARDS	110
5.3	THEOR	ETICAL PREDICTION AND DISCUSSION	112
СН	APTER ((6): CONCLUSIONS AND RECOMMENDATION	NS
		ARY	
6.2	CONCL	USIONS	121
6.3	RECOM	IMENDATIONS FOR FUTURE STUDIES	123
REI	FERENC	CES	124

LIST OF FIGURES

Page
Figure (2.1) Compressive strength according to filling powder type 17
Figure (2.2) Compressive strength according to ratio of filling powder and
cement
Figure (2.4) Compressive strength with and without steel fibers
Figure (2.5) Compressive strength improvement ratios for UHPFRC at 7 and
28 days as function of steel fibers
Figure (2.6) Compressive strength of UHPFRC after curing for 7 and 28
days
Figure (2.7) Flexural strength improvement ratios for UHPFRC at 7 and 28
days as function of steel fibers content
Figure (2.8) Flexural strength of UHPFRC after curing for 7 and 28 days19
Figure (2.9) Evaluation of the degree of hydration for different curing
conditions
Figure (2.10) Evaluation of the relative humidity for different curing
conditions
Figure (2.11) Autogenous shrinkage under different curing conditions 21
Figure (2.12) Evaluation of compressive strength for different curing
conditions
Figure (2.13) Relative strength index of heat treated UHSC samples
comparing to reference samples with standard curing regime
Figure (2.14) Compressive strength results for samples subjected to hot
water curing for 7,28,56 and 90 days
Figure (2.16) Seon-yu footbridge (Footbridge of Peace), Seoul, South
Korea
Figure (2.17) Bourg-lès- Valence road bridge, Drôme, South-Eastern
France
Figure (2.18) Sakata-Mirai footbridge, Sakata, Japan
Figure (2.19) Museum of European and Mediterranean Civilizations
(MUCEM), Marseille, France