

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Ain Shams University
Faculty of Women for Arts,
Science and Education
Physics Department

Study of Isomeric States Formation by Nuclear Reaction of Light Particles on Some Nuclei

Thesis submitted for the partial fulfillment of Ph. D. Degree in Physics (Nuclear Physics)

BY:

Nermin Ibrahem Mohamed El-Anwar

M. Sc. in Nuclear Physics, 2014 Assistant Lecturer in Physics Department Supervised by

Prof. Dr. Magda Mohamed Elsayed Abd El Wahab

Prof. of Nuclear Physics
Physics Department
Faculty of Women for Arts,
Science and Education,
Ain Shams University

Ass.Prof. Zeinab Yousef Morsy

Assistant Professor of Nuclear Physics
Physics Department
Faculty of Women for Arts,
Science and Education,
Ain Shams University

Prof. Dr. Elsayed Mohamed Kamal Elmaghraby

Professor of Nuclear Physics Physics Department Egyptian Atomic Energy Authority

Ass. Prof. Gehan Yousef Mohammed

Assistant Professor of Nuclear Physics Physics Department Egyptian Atomic Energy Authority

Dr.Eman Abd El Hameed Salem

Lecturer of Nuclear Physics Physics Department Faculty of Women for Arts, Science and Education, Ain Shams University

ACNOLEDGEMENT

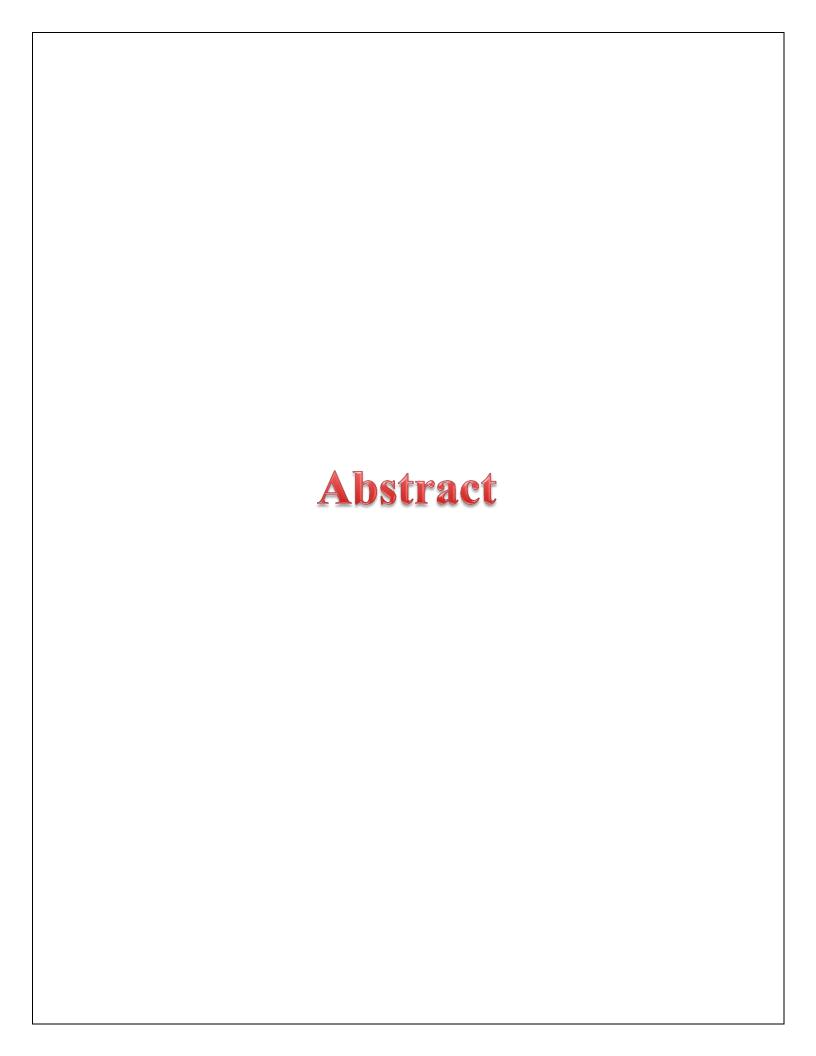
Infinite thanks are to Allah, the beneficent, the merciful. Who supported me in the steps of my life and enabled me to complete this work.

I would like to express my feelings of greatest gratitude and appreciation to my supervisor **Prof.Dr.Magda Abd El-Wahab** Physics Departmen, Faculty of Women for Arts, Science and Education, Ain Shams University for her kindness, valuable suggestions and guidance leading always towards more perfection and achievement of this work, for her advices, fruitful discussions and continuous hard work throughout this work.

I wish to express sincere thanks to my supervisor **Prof.Dr.El** - **Sayed Kamal Elmaghraby** Experimental nuclear **Physics** department, nuclear research center, Atomic Energy Authority. For his excellent supervision, help in experimental work, hard work and useful discussion during the progress of this thesis.

I thank **Dr. Zeinab yousef**, Associate prof. in Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University for her support and advice.

I would like to express my deep and sincere gratitude to **Dr**. **Eman Salem** lecturer of nuclear physics, Faculty of Women for Arts, Science and Education, Ain Shams University for her trustful help in this work.


I would like to express my great thanks to **Dr. Gehan Yousef** Associate prof. in physics department, Atomic Energy Authority, for her help and kindess.

Great thanks are also to **Prof.Dr.Manal Serag**, the head of Physics Department, **Faculty of Women for Arts, Science and Education**, **Ain Shams University**. For her help and her supported.

I would like to express my great thanks to **Dr. Shadia Talaat** Associate prof. in physics department, Faculty of Women for Arts, Science and Education, for her support and kindess. Special thanks for all supervisors of undergraduate nuclear physics lab.

Finally, I deeply thank my family especially my mother for their support and help.

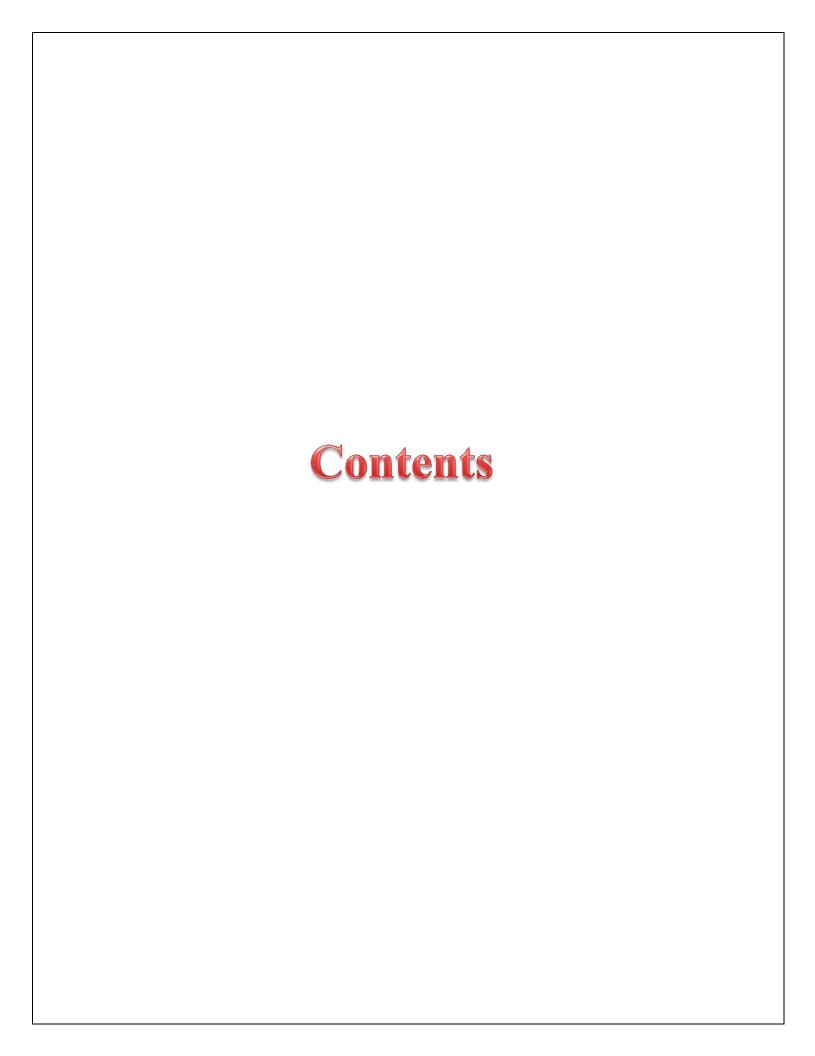
Special thanks for my colleagues for their direct support.

Abstract

In the present work the effects of isomeric state formation on the measurement of thermal neutron cross section and its associated resonance integral on neutrons reaction are discussed.

The isomeric thermal neutron cross section and isomeric resonance integral of 109 Ag (n, γ) 110m Ag, 133 Cs (n, γ) 134m Cs and 134g Cs, and 136 Ba (n, γ) 137m Ba, 68 Zn (n, γ) 69m Zn, 79 Br(n, γ) $^{80m+g}$ Br and 81 Br(n, γ) $^{82m+g}$ Br reactions were investigated together with 115 In (n, γ) 116m In monitor reaction. These residual nuclei have broad half-life time scale suitable for our investigation; (isomeric states having different half-life time from 2.5 min to 2 year).

Moderated neutrons from steady Am-Be sources were used for neutron activation. Field was monitored and mapped using gold and indium activation.

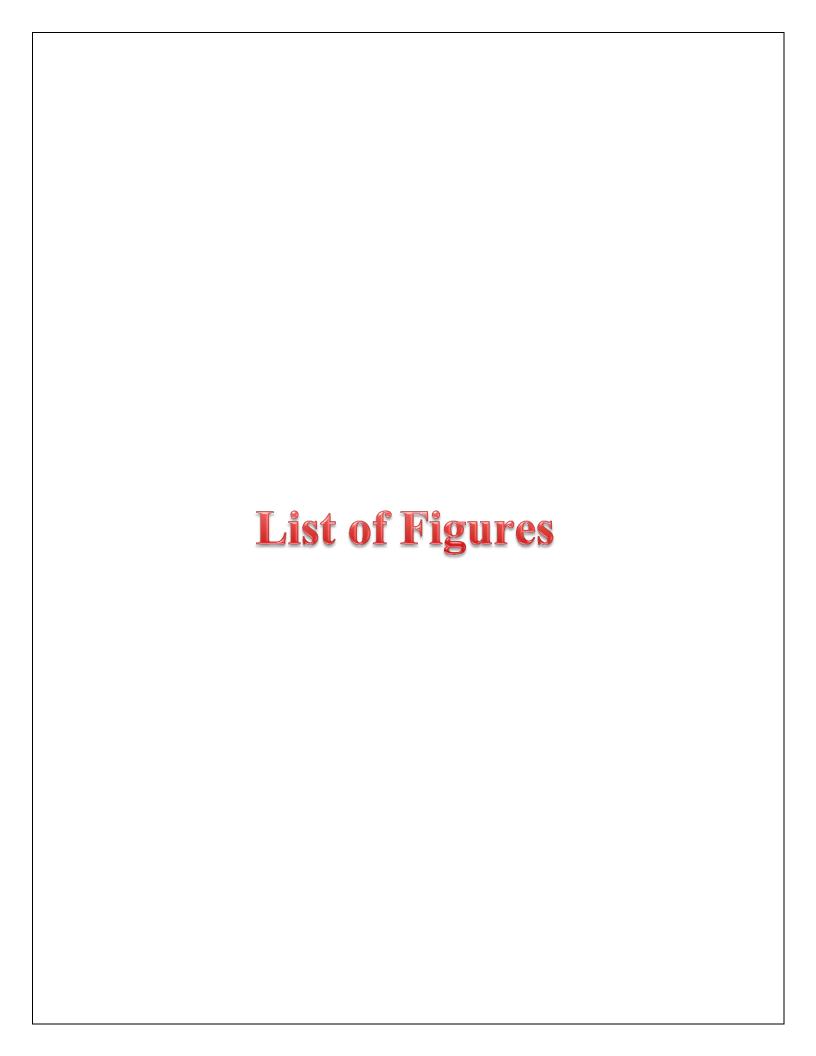

The k_0 -factor was measured for some residual nuclei, hence the k_0 -factor for 137m Ba was measured for the first time. The isomeric thermal neutron cross section and resonance integral for 115 In (n, γ) 116m In were evaluated to be 162.6 b and 2585 b. These data were used to measure the k_0 -factors; and compared to reported values to confirm the present procedure.

The thermal neutron cross section and resonance integral for ^{133}Cs (n, γ) $^{134\text{m}}\text{Cs}$ were found to be 2.64±0.11 b and 42±1.7 b, respectively; while those of the ^{109}Ag (n, γ) $^{110\text{m}}\text{Ag}$ reaction were 4.09±0.35 b and 68±6 b.

Thermal neutron cross section for 136 Ba (n, γ) 137m Ba was identified as 0.032 ± 0.003 b, while the resonance integral could not be evaluated as a result of interfering reactions.

The thermal cross section and resonance integral for ^{79}Br $(n,\gamma)^{80m+g}Br$ was identified as $\sigma^{m,g}_{Br,0}=10.05\pm0.3$ b and $I^{m,g}_{Br,0}\!=\!89.38\!\pm\!2.68$ b and for ^{81}Br $(n,\gamma)^{82m+g}Br$ was identified as $\sigma^{m,g}_{Br,0}\!=\!2.12\!\pm\!0.06b$ and $I^{m,g}_{Br,0}\!=\!46.03\!\pm\!1.38b.$

Model calculations were done using EMPIRE code to simulate isomeric ratio and compared with the experimental results. Steady neutron field could be retained with isotopic neutron source with moderation setup and geometry of suitable homogeneity and isotropy.



Contents

Title	Page
Acknowledgment	i
Abstract	iii
Contents	iv
List of figures	vii
List of tables	xi
Summary	xii
Chapter 1	<u>'</u>
Introduction and Literature Review	•
Title	Page
1.1 Neutron Sources	3
1.1.1 Beryllium Neutron Sources	4
1.1.2 Reactors	6
1.1.3 Spontaneous Fission (SF)	7
1.1.4 Accelerator Driven Systems	8
1.2 Nuclear Reactions and Structure	9
1.2.1 Elastic Scattering & Inelastic Scattering	11
1.2.2 Direct Reactions	12
1.2.3 Compound Nucleus Reaction	14
1.3 Neutron Activation Analysis	15
1.3.1 Detection Limits of NAA	19
1.4 Nuclear Isomer	20
The Aim of The Present Work	23
Literature Review	24
	,

Chapter 2		
Theoretical Background		
Title	page	
2.1 Reaction Cross Section	33	
2.2 The Nuclear Model	37	
2.2.1 The Statistical Models	37	
2.2.2 The Optical Model	40	
2.2.3 Shell Model	41	
2.3 The Level Densities	45	
2.4 Empire Code	46	
Chapter 3		
Experimental Work	1	
Title	page	
3.1 Determination of Reaction Rate	52	
3.2 Neutron Self-Shielding	53	
3.3 Cadmium Transmission Factor	56	
3.4 Calculation of Neutron Flux	57	
3.4.1 Method 1: Dual Flux Monitors	57	
3.4.2 Method 2: Single Monitor with and without Cd-Cover	57	
3.4.3 Method 3: Direct Comparator	58	
3.5 Uncertainties	61	
3.6 Benchmarking Method "k ₀ "	62	

3.7 Neutron Irradiation Setup		
3.8 Target Preparation	68	
3.9 Gamma Ray Measurements	71	
3.10 Measurements of Isomeric Cross Section and Resonance Integral	84	
3.10.1 Irradiation & Cooling and Measurement Time	86	
Chapter 4		
Results and Discussions		
Title	Page	
4.1. Verification of the Homogeneity of Neutron Field	87	
4.1.1 Cadmium Cover	89	
4.1.2 Cadmium Transmission Factor	92	
4.1.3 Self Shielding Factor	93	
4.2 Monitors and Benchmarking	94	
4.3 Flux Calculation	98	
4.4 Results of Thermal Cross section and Resonance Integral	101	
4.4.1 Results for 109 Ag $(n,\gamma)^{110m}$ Ag Reaction	103	
4.4.2 Results for 133 Cs $(n,\gamma)^{134m}$ Cs Reaction	106	
4.4.3 Results for ¹³⁶ Ba(n,γ) ^{137m} Ba Reaction	108	
4.4.4 Results for 68 Zn $(n,\gamma)^{69m}$ Zn Reaction	112	
4.4.5 Results for ⁷⁹ Br $(n,\gamma)^{80m+g}$ Br Reaction	113	
4.4.6 Results for ⁸¹ Br $(n,\gamma)^{82m+g}$ Br Reaction	115	
Conclusion	123	

List of Figures

NO.	Caption	Page
(1-1)	Elastic scattering reaction	11
(1-2)	Inelastic scattering reaction	12
(1-3)	Direct reaction mechanisms (a) stripping, (b) pick-up and (c) knock- out reactions	13
(1-4)	Decay scheme for the neutron capture process	15
(1-5)	Neutron captures (neutron activation process).	17
(1.6)	Decay scheme of 110mAg	21
(2-1)	Illustration of the difference between epi-thermal cut-off energy (\sim 0.1 eV) and the cadmium cut-off energy (E_{Cd} \sim 0.5 eV)	35
(2-2)	Flow-chart of the EMPIRE system showing major components of the system and their interdependence.	47
(3-1)	Standard neutron emission probabilities for the Am–Be source	64
(3-2)	The neutron irradiation setup used in the present work.	66
(3-3)	Routes of Interaction of Gamma Radiation with Matter.	76
(3-4 a & b)	Photos of high purity	78