

Comparative study between transcranial direct current and repetitive transcranial electromagnetic stimulation in the rehabilitation of primary fibromyalgia

Thesis

Submitted for Partial Fulfillment of Master Degree in Physical Medicine, Rheumatology and Rehabilitation

Presented by

Sahar Yousri Ragab Abd-Elmageed

(M.B., B. Ch)

Supervised by

Prof. Dr. Mervat Abd-ELHamid Reda

Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Dr. Dalia Mohamed Ezz-Eldin

Assistant Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Dr. Mohja Ahmed Abdel-Fattah

Assistant Professor of Physical Medicine, Rheumatology & Rehabilitation Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Mervat Abd-ELHamid Reda**, Professor of Physical Medicine, Rheumatology & Rehabilitation, Ain Shams University, for her close supervision, valuable instructions, continuous help, patience, advices and guidance. She has generously devoted much of her time and effort for planning and supervision of this study. It was a great honor to me to work under her direct supervision.

I wish to express my great thanks and gratitude to **Dr. Dalia**Mohamed Ezz-Eldin, Ass. Professor of Physical Medicine,
Rheumatology & Rehabilitation, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Mohja Ahmed Abdel-Fattah**, Ass. Professor of Physical Medicine,

Rheumatology & Rehabilitation, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, for their valuable help and support.

Finally, I would present all my appreciations to my patients without them, this work could not have been completed.

List of Contents

	Ti	tle f	Page No.
List of Abbreviat	ions		I
List of Tables			III
List of Figures			V
Introduction			1
Aim of the Work			4
Review of Literar	ture		
Chapter1:	Fibromyalgia Syndrome		5
Chapter2:	Treatment of Fibromyalgia		43
Chapter3:	Transcranial Electrical Stin	mulation	58
Patients and Me	thods		85
Results			111
Discussion			139
Summary			155
Conclusion			160
Recommendation	ns		161
References			162
Arabic Summary	,		
Appendix			

List of Abbreviations

Abb.	Full term	
1H-MRS	. Single-voxel proton magnetic resonance spectroscopy	
5-HT3	. Serotonin	
ACR	American College of Rheumatology	
AMPA	α amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid	
BDI	. Beck depression inventory	
BDNF	Brain-derived neurotrophic factor	
CBT	Cognitive-behavioral therapy	
CCK	Cholecystokinin	
CNS	Central nervous system	
COMT	Catechol-O-methyl transferase	
CSS	Central sensitivity syndrome	
DLPFC	Dorsolateral prefrontal cortex	
DNIC	Diffuse noxious inhibitory control	
EAA	. Excitatory amino acids Treatment	
EEG	Electroencephalogram	
FIQ	Fibromyalgia Impact Questionnaire	
EMG	. Electromyography	
FDA	Food and Drug Administration	
FM	Fibromyalgia syndrome.	
fMRI	Functional magnetic resonance imaging	
FMS	. Fibromyalgia syndrome	
GABA	. γ-aminobutyric acid	
GH	. Growth hormone	
HBOT	. Hyperbaric Oxygen Therapy	
HD-tDCS	. High-density transcranial direct current stimulation	
HADS	. Hospital Anxiety and Depression Scale	

List of Abbreviations Cont...

Abb.	Full term
HPA	. Hypothalamic-pituitary-adrenal
IBS	. Irritable bowel syndrome
ICD	. The International Classification of Diseases
IGF	. Insulin-like Growth Factor
LTD	. Long-term depression
LTP	. Long term potentiation
M1	. PRIMARY motor cortex
MADD	. Myoadenylate deaminase deficiency
MDD	. Major depressive disorder
MEP	. Motor evoked potential
NIBS	. Non-invasive stimulation
	. N-methyl-D-aspartate
	. Non-Steroidal Anti- Inflammatory Drugs
	. Regional cerebral blood flow
	. Randomized Controlled Trials
	. Repetitive transcranial magnetic stimulation
	. Serotonin-norepinephrine reuptake inhibitors
	. Single photon emission computed tomography
	. Selective serotonin reuptake inhibitors
	. Symptom severity scale
	. Transcranial direct current stimulation
	. Transcutaneous electrical nerve stimulation
	. Transcranial electric stimulation
	. Temporomandibular disorder
	. Transcranial magnetic stimulation
	. Transcranial random noise stimulation
	. Visual Analogue Scale
WPI	. Widespread pain index

List of Tables

Table No.	Title	Page No.
Table (1):	Patient-Reported outcomes (PRO) in	
Table (2):	Demographics of the patients	111
Table (3):	Patient with articular symptoms:	112
Table (4):	Patient with another central sensiti syndrome.	·
Table (5):	Wide spread pain index and symptom scale of all patient	
Table (6):	Comparison between both groups as a demographic data	
Table (7):	Comparison between both groups as a that found in patients before treatment	_
Table (8):	Comparison between both groups as a WPI&(SS) scale before treatment	C
Table (9): (Comparison between both group treatment as regard Tender point sco- intensity by VAS, FIQ score, and HAI	re, pain
Table (10):	Comparison of assessment scales before treatment in TMS group	
Table (11):	Comparison of assessment scales before treatment in tDCS group	
Table (12):	Comparison of FIQ change in both treatment protocol	
Table (13):	Comparison of change of Tender point groups after treatment protocol	

List of Tables Cont...

Table No.	Title	Page No.
Table (14):	Comparison of VAS of pain of bot	· •
Table (15):	treatment protocol Comparison of HADS of both grou	
Table (16):	treatment protocol	
, ,	assessment scales in our study	128
Table (17):	relation between gender of the pa assessment scales in our study	
Table (18):	Correlation between disease dura the patients and the assessment study	scales in our
Table (19):	Correlation between SSS of the pa assessment scales in our study	atients and the

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathways of pain processing impli in chronic pain and fibromyalgia	
Figure (2):	Tender points of old criteria fibromyalgia	
Figure (3):	Tender areas of new criteria of fibromyalgia	
Figure (4):	The general scheme of the effect and electric fields	~
Figure (5):	Main systems modified by DLPFO M1 stimulations and probably invin analgesic effects	rolved
Figure (6):	Evidence-based rTMS target for treatment of chronic neuropathic and chronic unexplained pain	pain
Figure (7):	Tender areas of new criteria of fibromyalgia	
Figure (8):	Visual analogue scale of pain	95
Figure (9):	Fibromyalgia impact question (FIQ).	
Figure (10):	Tender point score	98
Figure (11):	HADS	100
Figure (12):	Amagstim rapid II 8 shaped coil magnetic stimulator	
Figure (13):	Stimulation Parameters of rTMS.	103
Figure (14):	International 10-20 EEG system	104
Figure (15):	Localization of the coil over M1	106
Figure (16):	Activa Dose II iontophoresis direct current stimulator is one approved devices	of the FDA

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (17): I	Electrode placement for transcrani stimulation showing the target anodal electrode (C3; left) and the both anodal and cathod	t location of the he positioning of dal electrodes
Figure (18):	Male and female included in the	
Figure (19):	Percentage of patient with central sensitivity syndrom TMDS and PPS	e: IBS,
Figure (20):	Comparison of FIQ score in bot before and after treatment	~ -
Figure (21):	Comparison between FIQ Chang both groups after treatment	-
Figure (22):	Comparison of Tender point scor both groups before and after trea	
Figure (23):	Comparison between Tender poi Change of both groups before an treatment	d after
Figure (24):	Comparison of VAS in both before and after treatment	
Figure (25):	Comparison of VAS Change after treatment	-
Figure (26):	Comparison between HADS groups before and after treatment	
Figure (27):	Comparison of HADS Change treatment in both groups	•
Figure (28) :	Correlation between age of the p	
Figure (29):	Correlation between age of the p	patients and

Figure (30):	relation between gender of the patients and
	FIQ pre and posttreatment130
Figure (31):	relation between gender of the patients and
	tender point score pre and posttreatment130
Figure (32):	relation between gender of the patients and
	VAS of pain pre and posttreatment132
Figure (33):	relation between gender of the patients and
	HADS pre and posttreatment132
Figure (34):	Correlation between SS scale of the patients
	and FIQ pretreatment135
Figure (35):	Correlation between SSS of the patients and
	Tender point score pretreatment135
Figure (36):	Correlation between SSS of the patients and
	VAS of pain pretreatment136
Figure (37):	Correlation between SSS of the patients and
	HADS pretreatment136
Figure (38):	Correlation between SSS of the patients and
	FIQ posttreatment137
Figure (39):	Correlation between SSS of the patients and
C , ,	Tender point score posttreatment137
Figure (40):	Correlation between SSS of the patients and
	VAS of pain change between pre and
	posttreatment138
Figure (41):	Correlation between SSS of the patients and
	HADS change between pre and
	posttreatment138

INTRODUCTION

Fibromyalgia syndrome (FM) is a common chronic musculoskeletal disorder characterized by the presence of widespread pain and multiple tender points on physical examination Other important accompanying symptoms of FM are fatigue, sleep disturbance, psychological distress, and cognitive disturbance (*Clauw*, 2014).

Several factors are associated with the pathophysiology of FMS, but the causal relationship is still unclear. This includes alterations of central pain pathways, hyporeactivity of the hypothalamus-pituitary-adrenal axis, increased systemic proinflammatory, and reduced anti-inflammatory cytokine profiles, and disturbance in the dopaminergic and serotonergic system (*McBeth et al.*, 2007).

The treatment recommendations were classified as non-pharmacological therapies, pharmacological treatments, and complementary non-pharmacological therapies (*Macfarlane et al.*, 2017).

Drug combinations may be administered in FM patients, who do not respond to monotherapy, under careful observation and with consideration of the adverse effects and majority of patients recommended to use combination of both pharmacological and non-pharmacological therapies (*Macfarlane et al.*, 2017).

Non-pharmacological therapies include patient education, exercises, physical therapy modalities, hydrotherapy, and Cognitive-behavioral therapy (CBT) (*Nuesch et al.*, *2013*).

New alternative therapies have been advanced in latest years, one of these new treatments is noninvasive brain stimulation involving transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) (Castillo et al., 2016).

Transcranial direct current stimulation (tDCS) is the application of weak electrical currents (1–2 mA) to modify the activity of neurons in the brain. Neuronal firing differs according to the pole located near the cell body and it increases when the positive pole (anode) is located near it and inhibited when cathode stimulation is applied (*Nitsche et al.*, 2008).

The suggested mechanisms of neurophysiological effects induced by tDCS include improvements in regional cerebral blood flow (rCBF), facilitation of synaptic efficacy and expression of neurotrophic factors (*Fritsch et al.*, 2010).

TMS is a non-invasive brain stimulation technique that uses changes in magnetic felids to increase or decrease neuronal activity and Its application is delivered through a magnetic coil placed over the head that transforms electrical current into a magnetic field, which can be focalized to different areas of the brain (*Lefaucheur et al.*, 2014).

The rapidly changing magnetic field travels across the scalp and skull and induces an electric field within the brain

Therefore, induces current to flow in the brain by creating a transmembrane potential and depolarizes underlying superficial neurons, which then induces electrical currents in the brain (*Horvath et al.*, 2014).

The effects of TMS can be acute, intermediate or prolonged depending on the mode of stimulation and area stimulated (*Amit et al.*, 2018).

Repeated low frequency stimulation of a single neuron in culture produces long-lasting inhibition of cell communication while high frequency stimulation can improve communication so we can consider low frequencies (≤ 1 Hz) can induce neuronal inhibitory function, whereas high frequencies (≥ 5 Hz) are typically associated with increased cortical excitability (*Alberto et al.*, 2018).

A systematic review of the transcranial electric stimulation (tES) studies on treatment of FM showed that anodal tDCS of motor cortex, that represent the most studied stimulation target, is able to induce significant therapeutic effects on pain measures and/or life quality in FMS patients, as compared to placebo sham tDCS (*Brighina et al.*, 2019).

It was also found in a Systematic review which evaluated the pain reduction effect of rTMS in chronic pain a significant decrease in fibromyalgia pain (*Hamid et al.*, 2019).

AIM OF THE WORK

The aim of the study is to assess the effect of tDCS and rTMS stimulation as Non-invasive brain stimulation techniques in the rehabilitation of 1ry fibromyalgia in order to recommend the best line of rehabilitation.