

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

DEVELOPMENT AND EVALUATION OF SOME MOLECULAR MARKERS IN EGYPTIAN TILAPIINE

By HAGAR TAREK MAHMOUD ALI ELHIFNAWY

B.Sc. Agric. Sci., (Biotechnology), Fac. Agric., Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment
Of
the Requirement for the degree of

in
Agricultural Sciences
(Genetics)

Department of Genetic Faculty of Agriculture Ain Shams University

Approval Sheet

DEVELOPMENT AND EVALUATION OF SOME MOLECULAR MARKERS IN EGYPTIAN TILAPIINE

By HAGAR TAREK MAHMOUD ALI ELHIFNAWY

B.Sc. Agric. Sci., (Biotechnology), Fac. Agric., Ain Shams University, 2014

This thesis for M.Sc. degree has been approved by:

Dr. Samir Hamdy Abdel-Aziz
Prof. of Genetics, Faculty of Sciences, Benha University

Dr. Eman Mahamoud Fahmy
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Aiman Hanafy Abdel-Azeem Atta
Prof. of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Abdel-Salam Rashed
Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University

Date of Examination: 22 / 1 /2020

DEVELOPMENT AND EVALUATION OF SOME MOLECULAR MARKERS IN EGYPTIAN TILAPIINE

By

HAGAR TAREK MAHMOUD ALI ELHIFNAWY

B.Sc. Agric. Sci., (Biotechnology), Fac. Agric., Ain Shams University, 2014

Under the supervision of:

Dr. Mohamed Abdel-Salam Rashed

Professor Emeritus of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Aiman Hanafy Abdel-Azeem Atta

Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

Dr. Mahmoud Magdy Elmosallamy

Associate Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

ABSTRACT

Hagar Tarek Mahmoud Ali Elhifnawy: Development and Evaluation of some Molecular Markers in Egyptian Tilapiine, Unpublished Master Thesis, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2020

Tilapia are mainly freshwater fish inhabiting shallow streams, ponds, rivers and lakes and less commonly found living in brackish water. The *Tilapia* zillii was found in different water systems (Fresh and Brackish). The mtDNA Dloop sequencing of random T. zillii samples collected from different open and closed freshwater/brackish water bodies in Egypt was performed to define its population structure and invasive network among sampled locations to understand its effect on the Tilapia aquaculture industry in Egypt. The fresh population, Nasser lake showed the highest number of different haplotypes (H = 5), on the other hand, the brackish populations Ismailia farms and Idku lake recorded the highest level of haplotype diversity (1.00) but less haplotype number (3), in addition to the result of AMOVA, the water type grouping showed more variation within locations and among groups, and this reflects its importance in the distribution of fish besides. The *T. zillii* was found in different water systems (Fresh and Brackish), that concluded its ability to tolerate moderate water salinity levels. The sampled population was found to be structured; genetic differentiation was higher due to water type than water system. Nasser lake population was found to be the most diverse location in Egypt and considered to be a water gateway to the rest of the locations. Movement of the most widespread haplotypes was found to be linked through Nile water stream; however, it reaches closed systems through human factor (hatcheries and fry).

Keywords: *Tilapia zilli*, mitochondria control region, population genetics, invasive network

ACKNOWLEDGEMENTS

Praise be to God for what has been bestowed upon me by virtue of much goodness and knowledge bumper and helped me accomplish this work.

After thanking God Almighty and thank him for finishing this thesis I extend my sincere thanks and great gratitude to the virtuous **Professor Dr. Mohamed Abdel Salam Rashed** for his valuable supervision, his constant support and I would like to thank him very much for all the efforts exerted. I would like to extend my thanks to **Prof. Dr. Aiman Hanafy Abdel-Azzem Atta** for his positive support me and and his untiring efforts to help me review this message.

Special thanks to whom have supported me, taught me and planted in the values of scientific research and exerted all his efforts in order to reach in me all his learned from science, I would like to thank **Associated Prof. Dr. Mahmoud Magdy Elmosallam**y deeply for the follow-up and continuous review in writing this thesis, and no matter how many words and phrases, words of thanks remain unable to fulfill his right.

I would like to take part to graciously thank my colleagues in the laboratory of Molecular Genetics- Genetics Department, Faculty of Agriculture, Ain Shams University for support me (especially, Yousr Feteha for her help me while working on analytical programs and **Dr. Samah Soliman** for her support and embrace me, Zaynab Ibrahim Elshirif, Mai Hesham ali, Moustafa Nafee).

Last but not least, I also extend my heartfelt thanks and appreciation to my mother, who has instilled in me the love of science from a young age, for her support and backstop for me to achieve my target. I also thank my dear sister for sharing with me all my hard times.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	V
LIST OF ABBREVAITION	VIII
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2.1 Status of Egyptian natural lakes	4
2.2 Tilapia zillii: Model of study	5
2.2.1 Growth and morphology	5
2.2.2 Invasiveness and Behaviour	6
2.2.2 Tolerance to harsh conditions	7
2.3 Molecular DNA markers in tilapias	10
3- MATERIAL AND METHODS	14
3.1 Materials	14
3.1.1 Sample collections	14
3.2 Methods	15
3.2.1 Morphological identification of the samples	15
3.2.2 DNA extraction	16
3.2.3 Agarose gel electrophoresis protocol.	18
3.2.4 PCR amplification.	20
3.2.5 DNA sequencing and bioinformatic analysis	21
4- RESULTS AND DISCUSSION	22
4.1 DNA isolation.	22
4.2 PCR amplification.	23
4.3 DNA sequencing.	23
4.4 BLAST results	24
4.4.1 Among tilapiine species	24
4.4.2 Among <i>T. zillii</i> samples	24
4.5 Multiple sequence alignment and DNA polymorphism	25

	Page
4.5.1 Among tilapiine species	25
4.5.2 Among <i>T. zillii</i> populations	28
4.6 Genetic variation	34
4.6.1 Among tilapiine species	34
4.6.2 Among <i>T. zillii</i> populations	34
4.7 Phylogenetic analysis	36
4.7.1 Among tilapiine species	36
4.7.2 Among <i>T. zillii</i> haplotypes	38
4.8 <i>Tilapia zillii</i> population and invasive network analysis	41
4.8.1 Haplotype network analysis	41
4.8.2 Genetic diversity based on water type or water system	42
4.8.2.1 Unique and shared mutations	42
4.8.2.2 Genetic differentiation and gene flow	45
5- SUMMARY	49
6- REFERENCE	51
ARARIC SUMMARY	

LIST OF TABLES

No.	Title	Page
Table 1.	BLAST results for the D-loop region for the studied	
	tilapiine species including species, pairwise%,	
	accessions number	25
Table 2.	BLAST results of a total of 32 samples (25 matched	
	to T. zillii, seven samples matched O. niloticus	
	including the four control samples), the table show	
	the samples group, location, code, pairwise %,	
	GC%, species name and NCBI accession numbers	26
Table 3.	Singleton variable sites (single change) between the	
	aligned T. zillii samples, the single mutation is	
	shown between the samples from the current study	
	(coded by sample # and defined in current study	
	column), and the samples from the GenBank (coded	
	by KY# and defined in the GenBank column); the	
	variable site code and type are shown	32
Table 4.	Parsimony variable sites (two-variants) between the	
	aligned samples including samples and/or accession	
	number, variable site position, and change in	
	nucleotide. All the stated SNPs are of transition	
	nature	33
Table 5.	DNA polymorphism indices between the studied	
	tilapia species based on the mtDNA D-loop region.	
	Number of sequence (N), haplotype diversity (Hd),	
	number of haplotypes (H), number of segregation	
	sites (S), nucleotide diversity (π)	34

Title	Page
DNA polymorphism indices of <i>T. zillii</i> sampled populations from different Egyptian aquatic	
• ' '	
	36
The genetic distance between the studied tilapia	27
	37
1 11	
• • • • • • • • • • • • • • • • • • • •	
Ismailia farms (IS), Burullus lake (BL), Nasser lake	
(NL), Qaroun lake (QL), Qanater (QN), Al-Sirw	
Canal (SS), Marriott Lake (MT), Max bay (MB),	
Idku lake (IL)	40
Genetic differentiation and gene flow through	
AMOVA test of T. zillii based on molecular data.	
The source of variance (SV) (among group,	
population and within locations), the degree of	
freedom (Df), the sum of square (SS), the variance	
• • • • • • • • • • • • • • • • • • • •	
	46
	DNA polymorphism indices of <i>T. zillii</i> sampled populations from different Egyptian aquatic habitats/locations. Number of sequence (N), haplotype diversity (Hd), number of haplotypes (H), number of segregation sites (S), nucleotide diversity (π)

LIST OF FIGURES

No.	Title	Page
Figure 1.	Sampling location of T. zillii from seven different	
	sources, that all of them except Qaroun lake (QL)	
	are open water bodies which connected through the	
	Nile river. Ten samples per location were	
	collected	15
Figure 2.	Morphological characteristics among the Egyptian	
	tilapiine, the main difference is the tail spots size	
	and organization in linear (O. niloticus), semi-linear	
	(S. galilaeus) and unorganized (T. zillii) as indicated	
	by the arrows	16
Figure 3.	Agarose gel electrophoresis of total DNA isolated	
	from a final set of 48 collected samples from seven	
	locations. Samples no. 1-8 (SC), 9-15 (IS), 16-22	
	(BL), 23-30 (NL), 31-36 (QL), 37-42 (QN), 43-48	
	(SS)	22
Figure 4.	Gel electrophoresis of the amplified mtDNA D-loop	
	region which shows a band size of ~500 bp. <i>Tilapia</i>	
	<i>zillii</i> are samples no. 1-4 (SC), 5-8 (IS), 9-12 (BL),	
	13-16 (NL), 17-20 (QL), 21-24 (QN), 25-28 (SS),	
	29-30 are O. <i>niloticus</i> , and 31-32 are S.	
	galilaeus	23
Figure 5.	An example of bidirectional trace file	
	(chromatogram) of sample no. 1 for the amplified	
	D-loop region	23
Figure 6.	Comparative nucleotide alignment of the mtDNA D-	
	loop region between the three Egyptian tilapiine	
	species, total alignment length of 286 bp is shown.	
	Abbreviations: O. niloticus (Oni), S. galilaeus (Sga),	
	<i>T. zillii</i> (Tzi)	27

No.	Title	Page
Figure 7.	Comparative alignment nucleotide of mtDNA D-	28-30
	loop region for T. zillii samples, in addition to 9	
	accessions from GenBank databases. Gaps written	
	as (-) in the alignment. From 0-100 bp	
Figure 8.	The phylogenetic tree showing the relationship	
	between tilapiine fish according to mtDNA D-loop	
	region O. niloticus (Oni), S. galilaeus (Sga), T. zillii	
	(Tzi) the tree is rooted by the flathead grey mullet	
	Mugil cephalus (mugil; accession number	
	NC024531) from the family Mugilidae	38
Figure 9.	The NJ phylogenetic tree showing the relationship	
	between haplotypes of T. zillii samples based on	
	mtDNA D-loop region, the tree is rooted by the	
	flathead grey mullet Mugil cephalus (mugil;	
	accession number NC024531) from the family	
	Mugilidae	39
Figure 10.	Median-joining haplotype network inferred from	
	mtDNA D-loop region sequences of T. zillii from	
	different Egyptian habitats, each circle constitutes	
	different haplotypes; the size of a circle reflects each	
	haplotype frequency	41
Figure 11.	DNA divergences between populations inferred	
	from mtDNA D-loop region among different T. zillii	
	populations grouped by water system (Open-open:	
	OO, open-close: OC and close: CC), Mta: number of	
	mutations and S: number of segregating sites	44

No.	Title	Page
Figure 12.	DNA divergences between populations inferred	
	from mtDNA D-loop region among different T. zillii	
	populations grouped by water type (freshwater vs	
	brackish water). H: number of haplotypes, Hd:	
	haplotype diversity, Pi: nucleotide diversity, Mta:	
	number of mutations and S: number of segregating	
	sites	44
Figure 13.	F-statistics for the two tested factors, water type	
	(WT) and water system (WS) based on the mtDNA	
	D-loop between the different Egyptian populations	
	of T. zillii	46