

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Effect of Magnesium Sulfate "MgSO4" Therapy in Preterm Deliveries, Bolus versus Bolus and Infusion Protocols on Apgar score: Randomized Clinical Trial (RCT)

Thesis

Submitted for Partial Fulfillment of Master Degree in **Obstetrics and Cynecology**

By

Waleed Tarek Abdelrahman Sarhan

Faculty of Medicine –Misr University for Science and Technology
"MUST "University 2015
Resident of Obstetrics and Gynecology Soad Kafafi University Hospital

Under Supervision of

Prof. Dr. Noha Hahmed Rabei

Professor of Obstetrics & Gynecology Faculty of Medicine – Ain Shams University

Dr. Doaa Mohamed Mohamed Khalifa

Lecturer in Obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Mohamed ElSayed ElHodiby ElDarawi

Lecturer in Obstetrics and Gynecology Faculty of Medicine –MUST University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Moha Hahmed Rabei**, Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Dona Mohamed**Mohamed Khalifa, Lecturer in Obstetrics and

Gynecology, Faculty of Medicine, Ain Shams University,

for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Mohamed ElSayed ElThodiby ElDarawi**, Lecturer in Obstetrics and
Gynecology, Faculty of Medicine, MUST University, for his
great help, outstanding support, active participation and
guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Waleed Tarek Abdelrahman Sarhan

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Protocol	
Introduction	1 -
Aim of the Work	14
Review of Literature	
■ Magnesium Sulfate (Mgso4)	15
Preterm Labor	31
Role of MgSO4 in Neuroprotection	75
Patients and Methods	86
Results	93
Discussion	109
Summary	117
Conclusion	123
Recommendations	125
References	126
Arabic Summary	

Tist of Tables

Table No.	Title Page N	10.
Table 1:	Commonly recognized etiologies and pathways leading to spontaneous preterm birth	47
Table 2:	Main outcomes of randomized controlled trials and meta-analysis assessing the impact of antenatal administration of magnesium sulphate	85
Table 3:	Personal and present history	93
Table 4:	Obstetric history	95
Table 5:	Obstetric complications	98
Table 6:	Systolic and diastolic blood pressure in patients with preeclampsia	100
Table 7:	Material side effects after administration of magnesium sulphate	101
Table 8:	Apgar score 1 minute and 5 minute post delivery	102
Table 9:	Neonatal outcome in both groups	103
Table 10:	Full labs	105
Table 11:	Previous studies done on the effect of magnesium sulphate as a neuroprotection in preterm labour including our study	116

List of Figures

Fig. No.	Title Page	No.
Figure 1: Figure 2:	Mechanisms of excitotoxic-mediated injury Vascular effects of magnesium sulphate	21
Figure 3:	Indications for magnesium as therapeutic agent	22
Figure 4:	Biomolecular mechanisms linking inflammation with parturition	
Figure 5:	The temporal relationship between ascending intrauterine infection, choriamnionitis, intraamniotic infection,	
Figure 6:	and fetal inflammatory response The relationship between gestational age at delivery, infection inflammation and	
Figure 7:	neonatal outcomes Pathways leading to preterm birth	
Figure 8:	Comparison between Pt took bolus only and pt took bolus and infusion regarding smoker, hypertension and diabetes	
Figure 9:	mellitus	
Figure 10:		
Figure 11:	2 0	
Figure 12:	· · · · · · · · · · · · · · · · · · ·	
Figure 13:	Comparison between both groups regarding preterm labor history, premature rupture of membrane, ante-partum hemorrhage, preeclampsia and intrauterine growth retardation.	

Tist of Figures (cont...)

Fig. No.	Title Po	ige No.
Figure 14.	Comparison between both groups regardi	ng
rigure 14.	hypo reflex	•
Figure 15:	Comparison between both groups regardi	
8	APGAR 1 min and APGAR 5 min	•
Figure 16:	Comparison between both groups regarding neonatal intubation, respiratory distresyndrome, neonatal death, int	ng ess
	ventricular hemorrhage, periventricul	
	hemorrhage and necrotizing enterocolitis.	104
Figure 17:	Comparison between both groups regarding	ng
	ALT and AST	106
Figure 18:	Comparison between both groups regarding urea and hemoglobin	-
Figure 10.	Comparison between both groups regardi	
rigure 13.	creatinine	•
Figure 20:	Comparison between both groups regardi	ng
	platelets.	107
Figure 21:	Comparison between both groups regarding white blood cells.	•

Tist of Abbreviations

Abb.	Full term
ACOG	American College of Obstetricians and
	Gynecologists
<i>AF</i>	· · · · · · · · · · · · · · · · · · ·
	Alanine transaminase
-	Ante-partum hemorrhage
	Aspartate aminotransferase
<i>BMI</i>	Body mass index
<i>C.P</i>	
<i>CAI</i>	Chorio amnionitis
<i>CAP</i>	$ Contractile \hbox{-} associated\ proteins$
<i>CAPs</i>	Contraction associated proteins
CCBs	Calcium channel blockers
<i>Creat</i>	Creatinine
<i>CRH</i>	Corticotrophin releasing hormone
<i>CS</i>	Cesarean section
DBP	Diastolic blood pressure
DM	Diabetes mellitus
FIRS	Fetal inflammatory response syndrome
GBS	$Group\ B\ streptococcus$
Hb	
	Hemolysis elevated liver enzymes low
•	platelet syndrome
HS	Highly significant
HTN	Hypertension
<i>IM</i>	
<i>IUGR</i>	Intrauterine growth retardation
<i>IV</i>	_
<i>IVHge</i>	Intra ventricular hemorrhage
- C	Magnesium Sulfate
_	Matrix metalloprotease
<i>NA</i>	_

Tist of Abbreviations (cont...)

Abb.	Full term
NEC	Necrotizing enterocolitis
NF - κB	
	N-methyl- D –aspartate
<i>NS</i>	
	Nonsteroid anti-inflammatory drugs
<i>PG</i>	, ,
PGE2	
PGs	e
	Preterm premature rupture of membranes
	Progesterone receptor
	Premature rupture of membrane
	Preterm labor history
	Respiratory distress syndrome
	Rupture of membranes
	Reactive oxygen species
S	
	Systolic blood pressure
	Syncytiotrophoblast membrane
	.Voltage-operated calcium channels
WBCs	

Introduction

Preterm birth can be considered a complex problem in relation to baby's development to the parents' practical and emotional experience and to mother child interaction. The poor developmental outcomes of preterm infants have been well documented (*Ionio et al.*, 2017).

Protection of the immature brain of premature infants constitutes a crucial challenge for obstetricians and neonatologists (*Chollat et al.*, 2017).

Preterm birth is a risk factor for cerebral palsy (C.P.), a condition characterized by abnormal control of movement and posture that results in limitation of activity (*Horton et al.*, 2015).

Although the survival of premature infants is continuously improving, their neurological outcome remains a major concern, as preterm birth is associated with neuro-developmental impairments such as neuromotor deficits, cognitive deficits, learning disabilities, behavioral and psychiatric disorders and neurosensory deficiencies (*Chollat et al.*, 2017).

Currently, one third of cases of cerebral palsy (C.P.) are associated with early preterm birth (*Horton et al.*, 2015).

Almost 40% of individuals with C.P. were born preterm and the risk of C.P. increases with decreasing gestational age (Chollat et al., 2017).

Although survival rates of babies born preterm have risen, there has been no parallel fall in neuro-developmental impairment rates, especially among babies born very preterm at < 32 weeks' gestation (*De Silva et al.*, 2018).

Magnesium is an ionized mineral essential to hundreds of enzymatic processes, including hormone receptor binding, energy metabolism, muscle contractility as well as neuronal and neurotransmitter function (*Lingam and Robertson*, 2018).

It is primarily an intracellular cation, and stores are distributed between bone (53%), muscle (27%), and soft tissue (19%). Serum magnesium levels are tightly controlled (0.65– 1.05 mmol/L), and homeostasis is maintained through intestinal absorption, storage in bones, and renal excretion (Lingam and Robertson, 2018).

Magnesium has an inhibitory effect at neuronal synapses, leading to its use as an anticonvulsant, particularly in eclamptic seizures (Lingam and Robertson, 2018).

Magnesium sulfate "Mgso4" is involved in many intracellular processes, acting to induce cerebral vasodilatation, reduce inflammatory cytokines and oxygen free radicals, and inhibit calcium influx into cells. Animal studies have shown

that it has a neuroprotective effect and that it may also interact with antenatal steroids to preserve the integrity of the bloodbrain barrier in neuroinflammation (Bouet et al., 2015).

Three major randomized clinical trials suggest that magnesium sulfate administered before an anticipated early preterm birth reduces the risks of cerebral palsy in surviving infants. In March 2010, the American College of Obstetricians and Gynecologists (ACOG) and Society for Maternal Fetal Medicine released a joint clinical opinion stating that the available evidence suggests that magnesium sulfate is a fetal neuroprotectant (Horton et al., 2015).

There is strong evidence to support antenatal magnesium Sulphate (MgSO₄) infusion in order to prevent CP in context of prematurity. Based on animal and human observational studies that demonstrated a neuroprotective effect of MgSO₄ (Chollat et al., 2017).

Sixty-three women had to be treated in order to prevent CP in one child (95% CI 43 to 155). However, no statistically significant effect on infantile mortality was observed. In the light of these convincing results, several national authorities (USA, Australia and New Zealand, Canada, UK, Belgium and Ireland) have recommended antenatal administration of MgSO₄ in women at imminent risk of very preterm birth in order to prevent cerebral palsy (*Chollat et al.*, 2017).