

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

DEVELOPING AN INNOVATIVE TECHNIQUE TO ENABLE ESTIMATE OF SURFACE AREA AND VOLUME OF ASWAN HIGH DAM LAKE USING SATELLITE IMAGES

By Eng. Belal Mohamed Salah Eldin El-Leithy

M.Sc. Environmental Engineering, Institute of Environmental Studies & Research, Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
of
The Requirement for the Doctorate of Philosophy
in
Environmental Science

Department of Environmental Engineering

Faculty of Graduate Studies and Environmental Research (Ain Shams University)

APPROVAL SHEET

DEVELOPING AN INNOVATIVE TECHNIQUE TO ENABLE ESTIMATE OF SURFACE AREA AND VOLUME OF ASWAN HIGH DAM LAKE USING SATELLITE IMAGES

Submitted By Belal Mohamed Salah El-Din El-Leithy

B. Sc. In Electrical Engineering, Faculty of Engineering, Cairo University, 1981

Master in Environmental Sciences, Faculty of Graduate Studies and Environmental Research, Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment Of

The Requirement for the Doctor of Philosophy Degree In

Environmental Sciences
Department of Environmental Engineering Sciences

This thesis was discussed and approved by:

Name Signature

1-Prof. Dr. Aly Nabih El Bahrawy

Prof. of Irrigation and Hydraulics Faculty of Engineering Ain Shams University

2-Prof. Dr. Ashraf Khalid Helmy

Data Reception, Analysis and Receiving Station Affairs Division, National Authority for remote Sensing and space Sciences

3-Prof. Dr. Ahmed Moustafa Ahmed Moussa

Deputy Director of Coastal Research Institute National Water Research Center

2021

DEVELOPING AN INNOVATIVE TECHNIQUE TO ENABLE ESTIMATE OF SURFACE AREA AND VOLUME OF ASWAN HIGH DAM LAKE USING SATELLITE IMAGES

By Belal Mohamed Salah Eldin El-Leithy

M.Sc. Environmental Engineering, Institute of Environmental Studies & Research, Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment of The Requirement for the Doctorate of Philosophy degree in Environmental Science

Department of Environmental Engineering

Faculty of Graduate Studies and Environmental Research (Ain Shams University)

Under the Supervision of:

Prof. Dr. Aly El Bahrawy

Irrigation and hydraulics department Faculty of Engineering, Ain shams University

Prof. Dr. Noha Samir Donia

Environmental Engineering Department Faculty of Graduate Studies and of Environmental Research, Ain Shams University

Prof. Dr. Ayman Nasr Hamed Nasr

Data Reception, Analysis and Receiving Station Affairs Division, National Authority for remote Sensing and space Sciences

Acknowledgments

First of all, I thank the almighty Allah for his endless Grace and Blessing on me during this study. I am most grateful to my supervisors:

Prof. Dr. Aly El Bahrawy

Prof. Dr. Noha Samir Donia

Prof. Dr. Ayman Nasr Hamed Nasr

who offered guidance and support, and for all of their patience and much appreciated advise during my PhD thesis.

I highly appreciate the full support provided to me by my *Prof. Dr. Ahmed Moustafa Mousa*, Nile Research Institute (NRI), National Water Research Center (NWRC).

I would like to express my thanks and gratitude to *Dr. sayed Abdou Mohamed* from National Authority for Remote Sensing and Space Sciences (NARSS) for his endless support obtaining the required data and information required for the study.

My whole-heartedly special thanks go to my *wife and sons*, for all their support during my studies.

ABSTRACT

This study focused on developing an innovative technique that enables the accurate calculation of the lake water surface area and volume at any specific time using satellite images. To achieve the objectives of the study, many water Indices of image-processing techniques were investigated to accurately delineate the High Aswan Dam reservoir (HADR) water body boundary. The study shows that the MNDWI is most useful technique to delineate water surface from other land features. The processing of Landsat-8 and setienal-2 satellites images for the purposes of this research -water surface delineation- shows very high degree of consistency for the scale up to 1:50,000. The calculation of water body is applied for all satellite data coverages representing the lake surface area in different dates in the years 2015, 2016 and 2021 using 41 scenes from both satellites (Lansat-8 and sentinel-2). The 41 scenes are chosen from more than 150 scenes downloaded to select the proper scenes representing the nine complete lake surface coverages. The selected nine dates images were representing different lake levels varies from 173.49 to 181.24 meters which corresponds to the surveyed data by HYDROWEB project. Analyzing the water levels as a variable and the corresponding lake surface area, lead to a new mathematical power equation. The equation found to fit a curve that represents the relation between the water level (WL) and surface area with a very good -proportional of variance statistical measure- R2 value of 0.997 as follows.

Lake Surface area =
$$8.12548*10^{-12}*(WL)^{6.589258217}Km^{2}$$

The integration of the lake surface area equation is used to obtain the lake volume equation as a function of WL as follows:

Lake volume at wl water level

$=1.07065*10^{-15}*(wl)^{7.58926}-1.614989474$ BCM

For validation purposes four test images obtained in dates different from those used to develop the surface and volume equations (24/7/2020 and 25/1/2021, by sentinel-2). The investigated water levels, corresponding to the test images acquisition dates, are compared to water level values obtained from HYDROWEB data. The HYDROWEB water level value at 27/7/2020 was 178.19 m, and at 25/1/2021 was 181.04. It is concluded that the deviation RMS of the investigated water level values from HYDROWEB, as a reference, is 13 cm.

For the purposes of accuracy assessment of the lake area calculation, the google earth images with sub-meter resolution are used for the corresponding lake levels. 7 sites around the lake boundary are randomly selected. It is found that the difference in area percentage varies from 1.34% to 3.44% with an average difference of 2.22%. It is also noticed that the difference is always positive in reference to Google images. It means that, the water body area calculated from the low resolution images (Lansat-8 and sentinel-2) is slightly greater than the corresponding Google Earth images by 2.22%.

The validation process was proven to be a very successful monitoring system for lake level estimation and consequently, the surface area and volume in any date by acquiring a single satellite image such that it covers any small part of the generated monitoring sites.

CONTENTS

ABSTR	ACT	I
CONTE	ENTS	III
LIST O	F FIGURES	V
LIST O	F TABLES	VIII
LIST O	F ABBREVIATIONS	IX
Chapter	1 Introduction	1
1.2	Objectives	2
1.3	Study Area	2
1.4	Description of the High Aswan Dam Reservoir (HADR).	4
Chapter	2 Literature Review	6
2.1 B	ackground	6
2.2 P	revious studies	7
Chapter	3 Data Acquisition and Manipulation	34
3.1 P	rinciples of Remote-Sensing	34
3.2 S	atellite Images	36
3.2	2.1 Satellite Data Overview	37
3.2	2.2 Lansat-8 OLI Satellite Sensor System	37
3.2	2.3 Sentinel-2 satellite Sensor system	44
3.3 Iı	n situ Data Acquisition	51
3.4 sa	atellite data organization	57
Chapter	· 4 Materials and Methods	57
4.1	Methodology	62
4.2	Data Processing	65
4.3	Accuracy Analysis	77
Chapter	5 Results and Discussion	86

5.1 Lake surface area extraction	86
5.2 Lake volume analysis	102
5.3 Lake boundary vector extraction	106
5.4 Digital Elevation Model (DEM) generation	108
5.5 Lake level, surface and volume validation model	112
Chapter 6 Summary and Conclusion	118
Future Research	121
References	122