

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Glucose Intolerance in Intensive Care Patients: Incidence and Outcome

Chesis

Submitted for Partial Fulfillment of the Master Degree in General Intensive Care

By Ez alregal Galal Gouda

M.B.B.CH Faculty of Medicine – Cairo University

Under Supervision of

Dr. Gamal El din Mohammad Ahmad Elewa

Professor Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Ahmed Ali El Shebiny

Assistant Professor Anesthesiology, Intensive Care and Pain Management Faculty of Medicine at Ain Shams University

Dr. Reham Mustafa Hashim

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Before all, I am always indebted to Allah, the most merciful who granted me the ability to perform the work of this thesis.

I would like to express my deep gratitude and grateful appreciation to Dr./ Gamal El din Mohammad Ahmad Elewa, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his supervision, valuable expert guidance that enabled me to begin and complete my work successfully and unlimited support during the entire course of the study.

I would like to gratefully acknowledge the support, supervision and kindness of Dr./ Ahmed Ali El Shebiny, Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University. His moral support and continuous guidance had given me great help throughout my study.

My sincere thanks to Dr./Reham Mustafa Hashim, Tecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for her valuable supervision, support and continuous help.

All thanks and gratitude to my precious family for their kindness, love, devotion and continuous support.

Ez alregal Galal Gouda

CONTENTS

Title	Page N
Contents	I
List of Abbreviations	II
List of Tables	V
List of Figures	VII
Introduction	1
Aim of the Work	4
Review of Literature	5
Glucose Metabolism	5
Glucose Homeostasis	9
Glucose intolerance	19
Patients and Methods	30
Results	33
Discussion	51
Conclusion	56
Limitations of our study	57
Recommendations	58
Summary	59
References	62
الغة العربية	الملخص با

LIST OF ABBREVIATIONS

LIGI OI ADDIREVIATIONS				
Abb.	Full Term			
aBNST	: anterior Bed Nucleus of the Stria Terminals			
ACTH	: Adrenocorticotrophic hormone			
ADA	: American Diabetes Association			
ADP	: Adenosine Di-phosphate			
AMI	: Acute Myocardial Infarction			
ANOVA	: Analysis of Variance			
APACHE	: Acute Physiology and Chronic Evaluation Score			
AR	: Androgen Receptor			
ASL	: Airway Surface Liquid			
ATP	: Adenosine Tri Phosphate			
BAT	: Brown adipose tissue			
BGL	: Blood Glucose Level			
CCK	: Cholecystokinin			
CD26	: Cluster of Differentiation 26			
CD36	: Cluster of Differentiation 36			
CGC	: Conventional Glucose Control			
CGM	: Continues glucose monitoring			
CIP	: Critical illness polyneuropathy			
CNS	: Central Nervous System			
CO_2	: Carbon di oxide			
CRR	: Counter Regulatory Response			
CVS	: Cardiovascular system			
DIGAMI	: Diabetes and Insulin Glucose infusion in Acute Myocardial			
	Infarction			
DKA	: Diabetic Ketoacidosis			
DKA	: Diabetic Ketoacidosis			
\mathbf{DM}	: Diabetes Mellitus			
DPP4	: Dipeptidyl peptidase four			
EGP	: Endogenous Glucose Production			
ER α	: alpha Estrogen Receptor			
$\mathbf{ER} \boldsymbol{\beta}$: beta Estrogen Receptor			
FADH2	: Flavin adenine dinucleotide hydrogen			
GI	: Glucose Intolerance			
GIGD	: Gastro intestinally Induced Glucose Disposal			
GIP	: Gastric inhibitory polypeptide			

LIST OF ABBREVIATIONS

Abb.		Full Term
GIT	:	Gastro Intestinal Tract
GLP-1	:	Glucagon-like peptide-1
GLUT 1	:	Glucose Transporter one
GLUT 2	:	Glucose Transporter two
GLUT 3	:	Glucose Transporter three
GLUT 4	:	Glucose Transporter four
GLUT 5	:	Glucose Transporter five
GPER	:	G-Protein Coupled Estrogen Receptors
Gprc6	:	G-protein Coupled receptor 6
HHS	:	Hyperglycemic Hyperosmolar State
HPA	:	Hypothalamic -Pituitary -Adrenal
Hrs.	:	Hours
I.V	:	Intra Venous
ICU	:	Intensive Care Unit
IFG	:	Impaired Fasting Glucose
IGT	:	Impaired Glucose Tolerance
IIT	:	Intensive Insulin Therapy
IL-1	:	Interleukin -one
IL-10	:	Interleukin ten
IL-6	:	Interleukin -six
IR	:	Insulin Resistance
LPBN CCKN	:	Lateral Para Brachial Nucleus Cholecystokinin Neurons
M.V.	:	Mechanical Ventilation
mg/dl	:	Milligram per deciliter
mmol/l	:	Millimole per liter
Na+	:	Sodium
NAD	:	Nicotinamide adenine dinucleotide
NADHH	:	Reduced Nicotinamide adenine dinucleotide H stand for high
D4		energy Hydrogen
P4	:	progesterone Prod. Overesting Cons.
POC	:	Post-Operative Care
Pre Opt. Obstetric P-value	:	Pre-Operative Obstetric Probability
P-value PYY	•	peptide tyrosine tyrosine
S.C.	•	Sub Cutaneous
s. <u>c.</u>	•	Suo Cumicous

LIST OF ABBREVIATIONS

Abb.	<u>.</u>	Full Term
SD	:	Standard Deviation
SERCA	:	Sarco Endoplasmic Reticulum Calcium ATPase pump
SF.1	:	Steroid genic Factor One
SGLT1	:	Sodium Glucose co Transporter One
SNS	:	Sympathetic Nervous System
SPSS	:	Statistical Package for Social Science
T_2D	:	Type Two Diabetes
TAG	:	Tri Acyl Glyceride
TH	:	Thyroid hormone
TNF a	:	alpha Tumor Necrosis Factor alpha
USA	:	United State of America
\mathbf{VMH}	:	Ventromedial Nucleus of the Hypothalamus
WAT	:	White Adipose Tissue

LIST OF TABLES

Table N	o. Title	Page No.
Table (1):	Factors causing insulin resistance and dysfunction microcirculation	
Table (2):	Distribution of the studied patients according to peak glucose level during initial 48 hours of admission in relat to sex of the patients	tion
Table (3):	Distribution of patients according to peak glucose leduring initial 48 hours of admission in relation to know history of diabetes or not	own
Table (4):	Distribution of patients according to glucose level admission and peak glucose level during initial 48 hours admission in relation to special habit of the patie (smoking)	s of ents
Table (5):	Distribution of patients according to glucose level admission in relation to history of diabetes	
Table (6):	Distribution of patients involved in the study according peak of glucose level during initial 48 hours of admission relation to type of feeding.	n in
Table (7): 1	Relation between glucose level on admission and mortality	40
Table (8): 1	Relation between peak of glucose level during initial 48 ho of admission and mortality.	
Table (9):	Kruskal-wallis test for comparison between different gro of glucose intolerance on admission in relation to a APACHII score and days of mechanical ventilation and I stay	age, CU
Table (10):	Glucose level on admission in relation to patients' sex	43
Table (11):	Glucose level on admission in relation to admission cause	43
Table (12	2): Wilcoxn Rank Sum Test to compare group normoglycemia with moderate hyperglycemia according glucose level on admission	g to
Table (13)	e: Wilcoxn Rank Sum Test to compare group of n hyperglycemia with moderate hyperglycemia according glucose level on admission	
Table (14)	: Wilcoxn Rank Sum Test to compare group of moder hyperglycemia with sever hyperglycemia according glucose level on admission	to
Table (15):	Kruskall-Wallis Test: to compare between groups of gluc intolerance according to peak of glucose level during ini 48 hours of admission in relation to age, APACHI II sc	itial

and days on steroids, circulatory or respiratory supports (i.e. mechanical ventilation) and stayed in ICU	45
,	
Table (16): Distribution of patients according to peak of glucose level during initial 48 hours of admission in relation to admission	
cause	47
Table (17): Wilcoxn Rank Sum Test to compare normoglycemia with moderate hyperglycemia groups according to peak of	
glucose level during initial 48 hours of admission	48
Table (18):Wilcoxn Rank Sum Test to compare normoglycemia with	
sever hyperglycemia groups according to peak of glucose	
level during initial 48 hours of admission	49
Table (19): Distribution of patients according to glucose level on	
admission in relation to age	49
Table (20): Distribution of patients according to peak of glucose level	
during initial 48 hours of admission in relation to age	50