

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Stress ulcer prophylaxis in the critically ill patients

A Systematic Review/Meta-Analysis

For partial fulfillment of Master Degree In intensive Care

Bγ **Emil Noshy Aziz Salh**

M.B.B.Ch.

Under Supervision of

Prof. Dr. Ahmed Saeed Mohamed Ibrahim

Professor of Anesthesia and Intensive Care and Pain Management Faculty of Medicine – Ain-Shams University

Prof.Dr. Sameh Salem Hefni Taha

Assistant Professor of Anesthesia and Intensive Care and Pain Management Faculty of Medicine – Ain-Shams University

Dr. Samuel Habachi Daniel

Lecturer in Anesthesia and Intensive Care and Pain Management Faculty of Medicine – Ain-Shams University

Faculty of Medicine Ain-Shams University 2020

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

Then I would like to express my sincere appreciation and gratitude to **Prof. Dr. Ahmed Saeed Mohamed Ibrahim,**Professor of Anesthesia and Intensive Care and Pain Management, Faculty of Medicine — Ain-Shams University, for his great support all through the whole work, for valuable guidance, and follow up of the progress of this work. I have been greatly honored by his supervision.

Profound and ultimate gratitude are expressed to **Prof.Dr. Sameh Salem Hefni Taha,** Assistant Professor of Anesthesia and Intensive Care and Pain Management, Faculty of Medicine – Ain-Shams University, for his continuous help in following up the progress of the work, his continuous support and encouragement were really invaluable.

Last but not least, I can't forget to thank **Dr. Samuel Habachi Daniel**, Lecturer in Anesthesia and Intensive Care and
Pain Management, Faculty of Medicine — Ain-Shams
University, for the efforts and time he has devoted to
accomplish this work.

I would like to thank my **Parents** who sacrificed a lot for me for their continuous support, endless help and encouragement.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	4
Review of Literature	
Definition, Epidemiology, Prevalence	5
Risk factors of Stress Ulceration	12
Pathogenesis of SRMD	17
Prophylaxis, Treatment and Prognosis	25
Materials and Method	49
Results	54
Discussion	69
Conclusion	79
Summary	80
References	82
Arabic Summary	

List of Abbreviations

Abbrev.	Full term
ALB	Albumin
ALD	Alcoholic Liver Disease
ALF	Acute Liver Failure
ALT	Alanine transaminase
ASA	Acetylsalicylic acid
APACHE	Acute Physiology and Chronic Health Evaluation
APTT	A partial thromboplastin time
ARDS	The acute respiratory distress syndrome
ASHP	The American Society of Health-System Pharmacists
AST	Acid suppressive therapy
BSA	Body surface area
CAP	Community-acquired pneumonia
CA-UTI	Catheter –associated urinary tract infection
CDAD	Clostridium difficile-associated diarrhea
CENTRAL	Cochrane Central Register of Controlled Trials
CGRP	Calcitonin gene-related peptide
CI	Confidence interval
CLABSI	Central line –associated blood streem infection
CMM	Cancer specific Mortality Model
CRF	Corticotropin-releasing factor
CRI	Constant rate infusion
CYP450	Cytochrome P450
DVT	Deep venous thrombosis
EGD	Esophagogastroduodenoscopy
EGF	Epidermal growth factor
ELIZA	Enzyme-linked immunosorbant assay
EN	Enteral nutrition
GCS	Glasgow Coma Scale

Gastrointestinal tract

GMDS Gastric mucosal defense system

GUD Gastric ulcer disease

H pylori Helicobacter pylori

H2-RAs Histamine H2-receptor antagonist HAIs Health care –associated infections

ICH Intracerebral Hemorrhage
I V Intravenous adminstration

ICU Intensive care unit

INR International normalized ratio

LD..... Loading dose;

LDH..... Lactate dehydrogenase

LODS The Logistic Organ Dysfunction System

MOOSE...... Meta-analysis Of Observational Studies in

Epidemiology

NG...... Nasogastric tube

NSAIDs...... Non-steroidal anti-inflammatory drugs

OGD Oesophago-gastroduo denoscopy

OR..... Odds ratio

PE..... Pulmonary embolism

PG..... Prostaglandin

PPIs..... Proton pump inhibitors

PRISMA Preferred Reporting Items for Systematic Reviews

and Meta-Analyses

PUD Peptic ulcer disease

RCT...... Randomized controlled trial

ROS Reactive oxygen species

RR..... Relative risk

SAH Subarachnoid hemorrhage

SIRS...... Systemic inflammatory response syndrome

SGOT Serum glutamic oxaloacetic transaminase

SGPT...... Serum glutamic pyruvate transaminase

List of Abbreviations

SIADH Syndrome of inappropriate secretion of antidiuretic hormone

SMD...... Standard mean deviated SRI..... Stress related Injury

SRMD Stress related mucosal disease

SSI..... Surgical site infection

SUCRA Surface under the cumulative ranking curve

SUP...... Stress ulcer prophylaxis
TFF..... Trefoil factor family
TSA..... Trial sequential analysis

UGIB Upper gastrointestinal bleeding

VacA...... Vacuolating cytotoxin A

VAP Ventilator- associated pneumonia

VTE Venous thromboembolism

List of Tables

Table No	. Title	Page No.
Table (1):	Stress ulcer in Critically Ill Patients	8
Table (2):	Risk factors of stress related mucosa in critically ill patients	
Table (3):	The recommendation for SUP in critic patients	•
Table (4):	Drug to drug interactions with cime	tidine30
Table (5):	Drug to drug interactions with omep	razole 33
Table (6):	Comparison of the prophylactic safe efficacy of H 2RAs and PPIs in ICU	•
Table (7):	Drug to drug interactions with sucra	alfate 39
Table (8):	Cause of UGIB	45
Table (9):	Indicators of high risk of Rebleedin Mortalities in Patients with Non-var UGIB	riceal
Table (10):	Summary Characteristics of the inclustudies	

List of Figures

Figure No.	Title	Page No.
Figure (1):	Mechanism of mucosal tissue d	amage9
Figure (2):	Photographs by endoscopic of tissue damage:	
Figure (3):	Gastric mucosal defense system.(GMDS)	18
Figure (4):	Ulcer with visible vessel	47
Figure (5):	Ulcer with visible vessel after he placement	-
Figure (6):	PRISMA flow-chart	54
Figure (7):	Forest Plot of rates of clinically important GI bleeding	58
Figure (8):	Forest Plot of rates of overt GI b	oleeding 59
Figure (9):	Forest Plot of rates of mortality.	60
Figure (10):	Forest Plot of rates of Pneumon	ia61
Figure (11):	Forest Plot of rates of clinically important GI bleeding	62
Figure (12):	Forest Plot of rates of overt GI b	oleeding 64
Figure (13):	Forest Plot of rates of mortality.	65
Figure (14):	Forest Plot of rates of clinically important GI bleeding	
Figure (15):	Forest Plot of rates of mortality.	68

Introduction

tress Ulceration was an important cause of morbidity and mortality in critically ill patients. Early active treatment reduces the risk of clinically significant bleeding, stress ulcer prophylaxis therefore became a standard of care in all critically ill patients (*Paul*, 2010).

Multiple Stress-related mucosal disease (SRMD) is still associated with substantial mortality and costs, and prophylactic approaches, including enteral nutrition, are needed (*Alhazzani et al.*, 2017).

In critically ill people SRMD is a common complication. The human literature has defined the term SRMD to encompass the continuum of stress-related injury (SRI) to stress ulcerations (SU) (*Spirt*, 2004).

Overt bleeding characterized by hematemesis, gross blood, or coffee ground material in nasogastric (NG) tube aspirates, melena, or hematochezia has a recorded frequency of 0.6–6% in critically ill patients not treated with gastroprotectant (*Andrea et al.*, 2011).

High risk of stress-related GI bleeding in people includes respiratory failure requiring mechanical ventilation >48 h, coagulopathy, sepsis, acute kidney injury, hepatic dysfunction,

shock, trauma, burns > 35% of the body, neurologic trauma, surgery, myocardial infarction, multiple organ failure, aspiration pneumonia, organ transplant, major surgery, postsurgical states, prolonged ICU admission, ileus, and high-dose corticosteroid use (*Frandah et al., 2014*).

Stress ulcer prophylaxis (SUP) has been found to be efficient and thus considered as a standard of care in the intensive care unit (ICU), included in the mnemonic FASTHUG (Feeding, Analgesia, Sedation, Thromboembolic prophylaxis, Head of bed elevation, stress Ulcer prophylaxis, Glucose control) that was developed by ICU physicians to ensure that key aspects of care are addressed during each patient encounter (*Masson et al.*, 2013).

The benchmark for SUP to prevent bleeding stress ulcer is based on the understanding of the pathophysiology and recognized risk factors. The incidence of GI bleeding in critically ill patients was reduced by 59% in patients treated with stress ulcer prophylaxis agents, in comparison with those treated with placebo or no prophylaxis (*Krag et al., 2014*).

Actual trends in SRMD prophylaxis is the use of sucralfate, PPIs or H2RAs. The proportion of critically ill patients receiving SUP is greater than 90% and although majority of them receive H2RAs (63.9%), PPIs (23%), and sucralfate (12.2%) (*Daley et al., 2013*).

Treatment strategies need to be evaluated on an individual basis, taking into account the expected benefits of therapy balanced against the patient's risk factors for GI bleeding and the risk of hospital acquired pneumonia or Clostridium difficile associated diarrhea (CDAD) in the local epidemiological context (*Bulger et al.*, 2013).

Aim of the Work

The overall aims of the Stress ulcer prophylaxis in the critically ill patients is to determine the benefits and risks of stress ulcer prophylaxis SUP in ICU.