

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Population Ecology of Plantago major L. in Egypt

Thesis

Submitted in Partial Fulfillment for requirements of philosophy of Doctorate Degree in Botany (Plant Ecology)

$\mathcal{T}o$

Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University

Presented by Manar Alaa Soliman Mohammed

B.Sc. in Botany and Chemistry (2012) – M.Sc. Degree in Botany (Plant Ecology) (2016) - Faculty of Women, Ain Shams University

Supervised by

Dr. Mona Abd El-Wahed Naim

Assistant Professor of Plant Ecology, Botany Department, Faculty of Women Ain Shams University

Dr. Tarek Mohammed Galal

Dr. Ahmed Ahmed Khalafallah

Professor of Plant Ecology, Botany and Microbiology Department, Faculty of Science, Helwan University Assistant Professor of Plant Ecology, Botany Department, Faculty of Women, Ain Shams University

ACKNOWLEDGMENTS

(At first unlimited thanks to ALLAH)

Special and grateful acknowledgement, thanks and appreciation are expressed to Dr. Mona Abd El-Wahed Naim, Assistant Professor of Plant Ecology, Faculty of women, Ain Shams University for supervising this study, her helpful suggestions during the field, laboratory work and preparation of the manuscript.

Special unlimited and grateful acknowledgement, thanks and appreciation are expressed to **Dr. Tarek**Mohamed Galal, Professor of Plant Ecology, Faculty of Science, Helwan University and **Dr. Ahmed Ahmed**Khalafalah, Assistant Professor of Plant Ecology, Faculty of women, Ain Shams University for their helpful suggestions, proposing and supervising this study, kind advises and guidance during the field and laboratory work, data processing, statistical analysis, preparation of the manuscript, revision of the whole thesis and continuous help, encouragement and support following up throughout the whole work.

Special thanks to **Dr. Eman Twfik** Lecturer of genetics, Botany and Microbiology Department, Faculty Of Science, Helwan University, for the help in the practical processes of genetic diversity.

Special thanks, grateful acknowledgement and appreciation are to all members of Botany Department, Faculty of women, Ain Shams University, for continuous encouragement and support.

At the end I will be proud to express my unlimited thankfulness, gratitude and appreciation to my family and my husband for continuous support, help and patience.

POPULATION ECOLOGY OF *PLANTAGO MAJOR* L. IN EGYPT

Manar Alaa Soliman Mohammed

ABSTRACT

Plantago major has been used to treat various diseases since ancient times. The present study aimed to investigate the population dynamics, phytochemical, molecular and biological characteristics of P. major from different habitats seasonally, in addition to identify and analyze its common associated plant communities. Also, evaluate the ecological and economic importance of *P. major* and Estimate the allelopathic effect of it on seed germination and growth of economic crops. Eight heterogenic habitats (ditches, urban, fallow lands, canal banks, cultivated crops, field edges, orchards, and roadsides) were selected for collecting plant data, sampling and analysis. One hundred species were recorded associated with P. major; therophytes were the dominant life form and pluri-regionals were the dominant chorological elements. The application of TWINSPAN led to the recognition of 14 vegetation groups with *P. major - Convolvulus arvensis* group (VG F) was the most diverse, and P. major - Amaranthus hybrids group (VG A) was the least. Regarding the growth performance of *P. major*, canal banks and cultivated crop habitats as well as spring season were the most flourishing variables, while fallow lands and urban habitats as well as summer season were the most diminishing. The highest standing crop biomass of root fresh weight, shoot fresh and dry weight, and fresh and dry biomass were recorded in cultivated crops; and root dry weight in fallow lands, during spring. The highest chlorophyll a, b and total chlorophyll were recorded in field edges, while the highest carotenoids content was in orchards. The highest shoot P, K and Mg contents were recorded in ditches, field edges and orchards, respectively during spring, while the highest N was in canal banks during winter. Plantago major roots accumulated higher concentrations of most heavy metals than the shoots. The bioaccumulation factor is > 1, while the translocation factor from roots to shoots is < 1. So P. major is a suitable candidate for the study metals phytostabilization. The nutritive values of the above-ground shoots of *P. major* lie within the range of nutritive value of sheep, goat, dairy cattle, and beef cattle. The germination of wheat grains, clover, nettle-leaved goosefoot and scarlet pimpernel seeds were found to be sensitive to the high concentrations of P. major shoot water extract. The phytochemical screening of the ethanolic and

chloroform extract of *P. major* showed the presence of cardiac glycosides, flavonoids and phenolic compounds. The separation and estimation of phenolic compounds of the *P. major* leaves using HPLC technique identified ellagic acid, catechol, resorcinol, gallic acid and phloroglucinol, while flavonoid compounds produced apigenin, luteolin, chrysoeriol, rutin, quercetin, kaempferol and avicularin. The phytochemical profiling of *P. major* using GC-MS revealed the existence of 27 compounds most of which have biological and therapeutic importance. The most active extract against the test bacterial and fungal strains was the methanol extract, followed by ethanol, while water extract had weak effect on all tested organisms.

CONTENT

Subject	Page
INTRODUCTION	1
AIM OF THE STUDY	4
THE STUDY SPECIES	5
MATERIALS AND METHODS	22
1. vegetation study	22
Study sites	22
Floristic analysis	24
Soil analysis	25
2. population dynamic	26
plant sampling	26
Growth measurements	27
Photosynthetic pigments	27
Plant analysis	28
Germination test	30
Effect of salinity on seed germination	30
Micromorphology	30
3. Phytochemical study	31
Determination of cardiac glycosides	31
Determination of total flavonoid contents(TFC)	32
Determination of total phenolic contents	32
Estimation of phenolic and flavonoid compounds using HPLC	33
Extraction of lipids	34
GC-MS analysis of lipids	34
4. Allelopathy	35
5. Biological Activity	36
Collection of plant materials	36
Preparation of extracts	36

Subject	Page
Microorganisms used	37
In-vitro evaluation of the antimicrobial activity	37
6. Molecular Genetic Study	38
DNA isolation procedure	38
Polymerase chain reaction (PCR) condition	39
Polymerase chain reaction (PCR) condition for Inter	40
Simple Sequence Repeat (ISSR)	
7. Data Analysis	42
Multivariate analysis	42
Pollution index	43
Regression analysis	44
Bioaccumulation factor (BF)	44
Translocation factor (TF)	44
Statistical analysis	45
RESULTS	46
Flora and Vegetation	46
1. Floristic analysis	46
2. Life forms	52
3. Global Phytogeographical Distribution	52
4. Multivariate Analysis	53
Vegetation analysis	53
Diversity of the plant communities	59
5. Soil Analysis	60
Soil Chemistry	60
Soil nutrients	61
Soil heavy metals	61
Population dynamics of <i>Plantago major</i>	66
1. Morphological parameters	66
2. Growth Properties	68

Subject	Page
Plant density	68
Standing crop biomass	68
Average growth properties	70
Clustering analysis	72
3. Reproductive characteristics	72
Photosynthetic pigments	74
4. Inorganic nutrients	74
Root inorganic nutrients	74
Shoot inorganic nutrients	75
Average inorganic nutrients	78
Root heavy metals	78
Clustering analysis	82
Shoot heavy metals	84
Clustering analysis	85
Simple linear correlations	89
Bioaccumulation (BF) and translocation (TF) factors of heavy metals	91
5. Organic Nutrients	91
Seasonal organic nutrients	91
Average organic nutrients	94
Clustering analysis	94
6. Nutritive Value	96
Seasonal nutritive value	96
Average nutritive value	98
Clustering analysis	98
Seed germination	98
Effect of salinity on seed germination and seedling morphology	98

Subject	Page
7. Micromorphology	102
Root micromorphology	102
Leaf micromorphology	106
Phytochemical studies	111
Chemical constituents	111
Average chemical constituents	111
Phenolic Compounds	114
Average Phenolic Compounds	114
Flavonoid Compounds	116
Average Flavonoid Compounds	119
GC-Ms spectroscopy	119
Allelopathic potential of Plantago major	124
Germination Percentage	124
Root length and shoot height	128
Germination rate	128
Biological activity	131
In vitro antimicrobial activity of <i>Plantago major</i> extracts	131
Molecular characterization	135
ISSR identification	135
Genetic similarity analysis	135
DISCUSSION	140
ENGLISH SUMMARY	171
CONCLUSION	178
RECOMMENDATIONS	181
APPENDIX	182
REFERENCES	196
ARABIC SUMMARY	

List of Tables

Table	Title	Page	
1	Distribution of stands along the different habitats of	22	
	Plantago major in the study area.	23	
2	The used ISSR primers.	42	
3	Floristic features of the recorded species associated	47	
	with Plantago major.	47	
	Characteristics of the vegetation groups resulted from		
4	the application of TWINSPAN on the data set of 100	55	
	species in 172 sampled stands of <i>Plantago major</i> .		
5	Diversity indices of the 14 vegetation groups produced	60	
	from TWINSPAN.	00	
6	Chemical properties of the soil of <i>Plantago major</i>	62	
6	collected from the different habitats.		
7	Inorganic nutrients (mg kg ⁻¹) of the soils of the	63	
/	different habitats of <i>P. major</i> .	03	
O	Heavy metals concentration (mean±SD) of the soils of	64	
8	Plantago major in the different habitats.	04	
9	Seasonal variation in the morphological parameters of	67	
9	<i>Plantago major</i> in the different study habitats.	07	
10	Seasonal variation in density of <i>plantago major</i> in the	68	
10	different study habitats.	08	
	Seasonal variation in the standing crop biomass (g m ⁻²)		
11	of the different organs of <i>Plantago major</i> plants grown	69	
	in the different study habitats.		
	Annual average of the growth properties of <i>Plantago</i> .		
12	<i>major</i> collected from the different habitats in the study	71	
	area.		
13	Seasonal variation in reproductive characteristics of	74	
13	plantago major in the different study habitats.	, .	
14	Pigments analysis (mean \pm standard deviation) of the		
	leaves of <i>Plantago major</i> collected from the different	75	
	habitats.		
	Seasonal variation of inorganic nutrients content		
15	(mean±SD) of <i>plantago major</i> root in the different	76	
	study habitats.		

Table	Title	Page	
16	Seasonal variation of inorganic nutrients content of	77	
10	plantago major shoot in the different study habitats.	77	
17	Average annual inorganic nutrients content in the root		
	and shoot of <i>Plantago major</i> collected from the	79	
	different habitats.		
	Seasonal variation of heavy metal concentrations	80	
18	(mean±SD) in the root of <i>plantago major</i> collected		
	from the different study habitats.		
19	Average annual heavy metals (mean±SD) of <i>Plantago</i>	83	
19	<i>major</i> root collected from the different habitats.	0.5	
20	Seasonal variation of heavy metals (mean±SD) of	86	
20	plantago major shoot in the different study habitats.	00	
21	Average annual heavy metals (mean±SD) of <i>Plantago</i>	88	
21	<i>major</i> shoot collected from the different habitats.		
22	Simple linear correlation coefficient (r) between the	90	
	inorganic nutrients of <i>P. major</i> and soil variables.		
23	Bioaccumulation (BF) and translocation (TF) factors of	92	
	heavy metals in <i>Plantago major</i> .) <u></u>	
	Seasonal variation of the organic nutrient contents	93	
24	(mean±SD) of <i>Plantago major</i> shoot collected from the		
	different study habitats.		
	Average annual of the organic nutrient contents	95	
25	(mean±SD) of <i>Plantago major</i> shoot collected from the		
	different study habitats.		
26	Seasonal variation of the nutritive value of <i>Plantago</i>	97	
	major shoots in different habitats.		
27	Average annual nutritive value (mean±SD) of <i>Plantago</i>	99	
	major shoots collected from the different habitats.	1	
28	Effect of salinity on the germination (%) of <i>Plantago</i>	101	
	major seeds.		
30	Anatomical characteristics (Mean \pm SD) of roots of <i>P. major</i> from the different study habitats.	103	
	Anatomical characteristics (Mean \pm SD) of <i>P. major</i> leaves from the different habitats.		
31	Seasonal chemical constituents (Cardiac glycosides,	112	
	total flavonoids and total phenolic contents) of <i>P</i> .	112	
	<i>major</i> leaves from the different habitats.		