

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

Department of Physics

Enhancement of Drug Release Efficiency Using Magnetic Nano composite

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in BiophysicsBy

Alaa Al Rahaman Gamal Saad Ahmed

B.Sc. Biophysics, Faculty of science, Ain Shams University 2013

Under Supervision of:

Prof .Dr. El-Sayed Mahmoud El-Sayed

Professor of Biophysics – Department of Physics Faculty of Science – Ain Shams University

Dr. Heba Mahmoud Ebrahim Kahil

Lecturer of Biophysics – Department of Physics Faculty of Science – Ain Shams University

Dr. Tarek Ahmed Ali El-Hamouly

Lecturer of Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority

Cairo, Egypt

Ain Shams University Faculty of Science Physics Department

APPROVAL SHEET

Enhancement of Drug Release Efficiency Using Magnetic Nano composite

A Thesis submitted in partial fulfillment of the requirements for the degree of **Master of Science in Biophysics**

By

Alaa Al Rahaman Gamal Saad Ahmed

Supervisors	Signature
Prof .Dr. El-Sayed Mahmoud El-Sayed Professor of Biophysics	()
Department of Physics, Faculty of Science-ASU	
Dr. Heba Mahmoud Ebrahim Kahil Lecturer of Biophysics – Department of Physics Faculty of Science – Ain Shams University	()
Dr. Tarek Ahmed Ali El-Hamouly	()
Lecturer of Drug Radiation Research Department, National Center for radiation Research and Technolog Energy Authority	gy, Egyptian Atomic

Cairo, Egypt 2022

Ain Shams University Faculty of Science Physics Department

Enhancement of Drug Release Efficiency Using Magnetic Nano composite

A Thesis submitted in partial fulfillment of the requirements for the degree of **Master of Science in Biophysics**By:

Alaa Al Rahaman Gamal Saad Ahmed

Examiners Committee	Signature
Prof .Dr. El-Sayed Mahmoud El-Sayed	
Prof. Dr. Reem Hassan Nour El-Deen El-Gebaly	
Prof. Dr. Abeer Mohamed Ameen Ali	

Ain Shams University Faculty of Science Physics Department

Researcher Data

Name: Alaa Al Rahaman Gamal Saad Ahmed

Degree: M. Sc

Department: Physics

Faculty: Science

University: Ain Shams

Graduation date: 2013 – Ain Shams University

Field of specialization: Science, Biophysics

Current Job: Demonstrator, Physics department

Registration date: 10/7/2017

Grant date: 2022

Cairo, Eypt 2022

Acknowledgement

All thanks to **Allah** for giving me the courage and fortitude to complete this work.

I would like to express my heartfelt gratitude and deepest appreciation to my supervisor, **Prof .Dr. El-Sayed Mahmoud El-Sayed** for his invaluable advice and support throughout my work. Without your understanding and patience, none of this would have been possible.

I am grateful from the core of my heart to my supervisor **Dr. Heba Mahmoud Ebrahim Kahil** for suggesting this fruitful point of research guidance, devotion, and promotion for completion of this work, her brilliant ideas, guidance, and mentoring helped me overcome many hurdles throughout my Master's research.

I would like to extend my thanks to my supervisor Dr. Tarek Ahmed Ali El-Hamouly for his great effort and support for me in my work, his great ideas on how to complete the required work.

Thanks to all members of the biophysics group. Physics Department, Faculty of Science, Ain Shams University for their cooperation.

I would like to thank my wonderful husband, assistance. Prof. Mohamed Mostafa has been there for me through the toughest of times and completely supporting my dreams.

Last but most importantly, I want to thank my parents, who have sacrificed much to ensure that I have the best in life and my beautiful children Anas, Hamza, and Nouran.

TABLE OF CONTENTS

Contents

Ab	strac	t		1
1.	Intr	oduc	tion and literature review	1
	1.1.	Intr	oduction	1
	1.2.	Lite	erature review	6
	1.2	.1.	Biomedical application of magnetic nanoparticles	6
	1.2	.2.	Synthesis of magnetic nanocomposite	13
	1.2	.3.	Encapsulation of SPIONs in thermoresponsive polymer.	15
	1.2 del		Magnetic thermoresponsive nanocomposite as drug systems DDS	18
		.5. ocon	Biocompatibility of magnetic thermoresponsive mposites	23
	1.3.		n of work	
2.	The	eoreti	cal aspects	26
4	2.1.	Col	orectal carcinoma (CRC)	26
4	2.2.		RP and PARP inhibitor	
2	2.3.	Нур	perthermia as a therapeutic modality	31
	2.3	.1.	Magnetic fluid hyperthermia	31
	2.3	.2.	Tumor micro environment	32
	2.3	.3.	The effect of heating on tumor tissue	33
2	2.4.	The	oretical background of magnetic hyperthermia	34
	2.4	.1.	Crystal structure of iron oxide nanoparticles	34
	2.4	.2.	Ferrimagnetism in iron oxide	36
	2.4	.3.	Magnetization in bulk material	38
	2.4	.4.	Single domain structure	44
	2.4	.5.	Superparamagnetism (SPM)	45
	2.4	.6.	Relaxation mechanisms	46
	2.4	.7.	Specific absorption rate (SAR)	48
2	2.5.	Sma	art polymer; drug delivery and controlled drug release	49

TABLE OF CONTENTS

	2.5.1. Drug delivery	50
	2.5.2. Thermoresponsive polymer; structure and properties	51
	2.5.3. In situ free radical polymerization	53
3.	Materials and Methods	56
	3.1. Materials	56
	3.2. Methods	57
	3.2.1. Synthesis of superparamagnetic iron oxide nanoparticles (SPIONs)	57
	3.2.2. Synthersis of poly(N-isopropylacrylamide) (PNIPAAm)	57
	3.2.3. Synthesis of magnetic thermoresponsive nanoco	58
	mposites (MTNs)	58
	3.3. Characterization of magnetite and MTN	59
	3.3.1. Structural analysis	59
	3.3.2. Phase transition measurements	65
	3.3.3. Magnetic characterization	67
	3.4. Drug loading	71
	3.5. Drug release	72
	3.6. In vivo study	74
	Kidney and liver functions	75
	Histological examinations	75
	3.7. In vitro study	75
	3.7.1. MTT assay	75
	3.7.2. In vitro cytotoxicity study	76
4.	Results and discussion	78
	4.1. Structural analysis	78
	4.1.1. X-ray diffraction	78
	4.1.2. Scanning electron microscope SEM and Electron dispersive X-ray spectroscopy	80
	4.1.3. High resolution transmission electron microscopy	
	(HRTEM)	82

TABLE OF CONTENTS

	4.1.	4. Fourier transform infrared (FTIR)	. 85
	4.1.	5. Thermal gravimetric analysis (TGA)	. 86
	4.2.	Phase transition temperature measurements	. 88
	4.2.	1. Phase transition temperature measurements of PNIPAAm	. 89
	4.2. MT	2. Phase transition temperature measurements of MTN and N.5-AIQ	. 90
	4.3.	Magnetic characterization	. 93
	4.3.	1. Magnetic properties	. 93
	4.3.	2. Magnetic fluid hyperthermia MFH	. 96
	4.4.	Drug loading	. 99
	4.5.	Drug release	101
	4.6.	In vivo study	103
	Kid	ney and liver functions	103
	4.7.	In vitro study	106
5.	Cor	nelusions	108
	Refere	ences	110

LIST OF FIGURES

List of Figures

Figure 1.1 Schematic representation shows the bimodal therapy, achieved by	
magnetic thermoresponsive nanocomposite.	5
Figure 1.2 Schematic representation of the biomedical applications of	
SPIONs	7
Figure 2.1 structural representation of PARP1 and its binding with damaged	
DNA (Jannetti, et al., 2020)	29
Figure 2.2 General chemical mechanism for the poly(ADP-ribosyl)ation	
reaction catalyzed by PARPs, with amino-acids in the enzyme numbered as	
for PARP-1. General pharmacophore for compounds which inhibit PARPs	
and the structure of 5, aminoisoquinoline 5AIQ (Threadgill, 2015), (Vinod et	
al, 2010)	30
Figure 2.3. Schematic representation for vasculature in normal and tumor	
tissues	33
Figure 2.4. The inverse spinel crystal structure of magnetite (Fe ₃ O ₄), showing	
the FCC close-packing of O ²⁻ ions in black, the tetrahedral sites (occupied by	
Fe ³⁺) in red, and the octahedral sites (occupied by both Fe ³⁺ and Fe ²⁺) in blue	
(Hashimoto, et al., 2019)	
Figure 2.5 crystal structure of maghemite (Rachna, et al. 2019)	36
Figure 2.6 Conceptual representations of double and super-exchange	
interaction in Fe ₃ O ₄ through d orbitals of Fe ⁺² and Fe ⁺³ cations	37
Figure 2.7. Schematic representation of the overlapping of Fe^{2+}/Fe^{3+} cations	
and O ²⁻ anion 3d- and 2p orbitals	
Figure 2.8 Spin configuration of Fe ³⁺ and Fe ²⁺ in both octahedral and tet	
Figure 2.9 Schematic diagram of the free energy of a single domain	40
Figure 2.10. Schematic representation of domains formation; (a) field line in	
a particle of single domain, (b) formation of domains, (c) closure domain	41
Figure 2.11. Schematic showing the magnetic hysteresis loop	43
Figure 2.12 Schematic diagram showing the types of magnetic materials	
(Mody, et al. 2013)	43
Figure 2.13 Schematic illustration for the size effect on the magnetic state of	
material and its coercivity	44
Figure 2.14 Schematic representation for Neel and Brownian relaxation	
losses	48
Figure 2.15 Schematic showing the problematic drug release and the	
desirable controlled release	51
Figure 2.16. Schematic representation to synthesis of Poly(N-	
isopropylacrylamide)	53
Figure 2.17. The most common initiators used for production of free radicals	54

LIST OF FIGURES

Figure 3.1 Schematic representation of synthesis of SPIONs (A) & synthesis	
of MTNs (B)	58
Figure 3.2 X-ray diffractometer and schematic representation of its main	
components	60
Figure 3.3 Scanning electron microscope instrument and schematic	
representation of its component	61
Figure 3.4. Schematic representation of energy dispersive X-ray spectroscopy	62
Figure 3.5 High resolution transmission electron microscopy	63
Figure 3.6 Fourier transform spectroscopy (FTIR) instrument	64
Figure 3.7. Schematic diagram shows the principle of turbidity	
measurements; (A) Nephelometer, (B) UV-visible spectrophotometer	66
Figure 3.8. Schematic showing of Vibrating Sample Magnetometer	68
Figure 3.9. Schematic representation of working coil of the induction heater	70
Figure 3.10. Schematic showing of HPLC components	73
Figure 3.11: (a) The intraperitoneal injection of the mouse, (b)the anatomy of	
themouse to collect the liver and kidney	74
Figure 3.12. Reduction of yellow MTT to purple farmazan crystal is	
indication to viable cells	76
Figure 4.1: X-ray powder diffraction patterns of IONPs	79
Figure 4.2: A) SEM image of SPIONs, B) EDX spectrum of SPIONs, C)	
EDX spectrum of MTN	81
Figure 4.3: TEM image of MTN (a) & size distribution curveof SPIONs core	
(b)	83
Figure 4.4: SAED pattern of magnetic nanocomposite (MTN)	84
Figure 4.5: FTIR spectra of SPIONs and SPIONs -PNIPAM	86
Figure 4.6: The thermogram of MTN sample	88
Figure (4.7): (A),(B) Turbidity test for PNIPAAm showing the cloud point	
Γ_{CP} of the polymer, (C),(D) and (E) DSC of PNIPAAM,MTN and MTN.5-	
AIQ showing the phase transition temperature of the nanocomposites	92
Figure 4.8: M versus H hysteresis loop of magnetite and magnetic	
nanocomposite(MTN)	95
Figure 4.9: Temperature time dependence curve for SPIONs sample	98
Figure 4.10: A) HPLC chromatogram for 5-AIQ, B) drug loading efficiency	
of MTN samples	100
Figure 4.11. 5AIQ release profile OF MNC.5AIQ.4 with temperature; (A)	
UV-VIS analysis, (B) HPLC analysi	102
Figure 4.12Effect of CIS (dose=15 mg/kg) and MTN.5AIQ (dose=5mg/kg)	
on kidney and liver functions: Serum (A) creatinine, (B) uric acid, (C)	
glutamic pyruvic transaminase (GPT)and (D) glutamic oxalic transaminase	

LIST OF FIGURES

(GOT) were evaluated for the three experimental groups; CTRL, CIS
and MTN.5-AIQ. Each value represents the mean \pm SE (n=5 mice per
group),*significantly different versus control group (CTRL) (P<0.05), **
significantly different versus control group (P<0.005), ****significantly
different versus control group (P<0.0001). CTRL; control, CIS: cisplatin,
MTN.5-AIQ; magnetic thermoresponsive nanocomposite loaded with 5-
aminoisoquinoline
Figure 4.13(A) Normal control of mouse kidney. (B-D) Pronounced
histopathological abnormalities are seen in mice treated with cisplatin (15
mg/kg body weight). (B) Congestion and partial atrophy of glomeruli in the
cortex, (C) congestion and mild tubular degeneration in the cortico-
medullary junction, (D) congestion and perarterial leucocytic aggregation in
the medullary portion of the kidney. (E) Normal renal tubules in the cortico-
medulry junction and normal collecting tubules (F) normal renal cortex be
observed in the kidney of the MTN.5-AIQ-treated group. (G&H) normal
hepatic cords with normal hepatocytes in control group. (I&J) Pronounced
histopathological abnormalities are seen in mice treated with cisplatin (15
mg/kg body weight. (I) Swelling and mild vascular degeneration in
hepatocytes, (J) congestion of both central and portal vein together with
mononuclear aggregation. (K) Livers of MTN.5AIQ-treated mice shows
nearly normal hepatic cords with normal hepatocytes and sinusoids. Scale
bar=100µm. MTN.5-AIQ; magnetic thermoresponsive nanocomposite loaded
with 5-aminoisoquinoline
Figure 4.14. Cytotoxicity measurement of MTN and MTN.5-AIQ on Caco-2
cells; Caco-2 cells were incubated with different doses of either MTN
unloaded or loaded composites. Twenty four hours later, cell viability was
determined via MTT assay. MTN; magnetic thermoresponsive

LIST OF TABLES

List of tables