

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

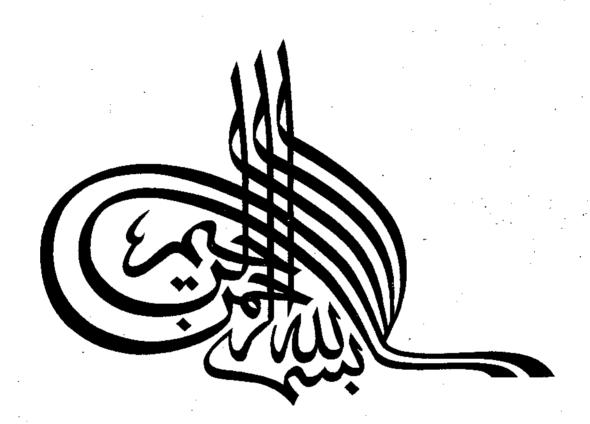

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية



شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

ľ

B/6611

Effect of the Various Parameters on the Performance of Hydrogen Storage in Intermetallic Compounds

Thesis

Submitted in partial fulfillment

For

The Degree of Doctor Philosophy

In

Materials Science

By

Ehab Abd El-Salam Mohemed Nageeb Karakish

M . Sc. 1993

Prof. Hassan I. Shaaban H. Shaah Poof Do. Idoahim Zaki J. Sell

Materials Science Department

Institute of Graduate Studies and Research

University of Alexandria

2003

SUPERVISORS

PROF. ESSAM EL-RAFEY

Professor, Vice Dean of Institute of Graduate Studies and Research, University of Alexandria.

Dr. Samir L. Isaack

Associate Professor of Chemical Engineering, Atomic Energy, Authority, Alexandria Branch.

Dr. Moataz M. Soliman

Associate Professor, Materials Science Department,
Institute of Graduate Studies & Research,
University of Alexandria.

ACKNOWLEDGMENT

It is with pleasure and gratitude that I render acknowledgment herewith to many who have contributed their invaluable time, assistance and cooperation in having made possible the completeness of this work.

With profound gratitude. I thank Professor Essam El-Rafey, Vice Dean of Institute of Graduate Studies & Research, University of Alexandria, for his valuable and critical supervision throughout the course of this investigation and his fruitful discussions and candid contribution all over the study.

I gratefully acknowledge Dr. Samir L. Isaack, Associate Professor, of Chemical Engineering, Atomic Energy Authority, Alexandria Branch, that he affiliated this work and closely supervised all the steps of its progress. I would like to state that without his help this work might have never come into being.

I am also indebted to Associate Professor Motaz M. Soliman, Materials Science Department, Institute of Graduate Studies and Research, University of Alexandria for his sincere help and supervision.

To My Parents To My Wife To My Sons

TABLE OF CONTENTS

SUMMARY
CHAPTER I: INTRODUCTION
I.1. General Introduction of Hydrogen Energy
I.2. Metal Hydride Application
I.3. Production of PV Hydrogen
I.4. Trends in the Development of Hydrogen Powered Vehicles Usin Hydride Storage
I.5. Hydrogen Storage in Carbon Nanostructures (SWNTs)
I.6. FeTi Intermetallic Compounds and its Substitutes as Hydroge Storage Media
I.6.1. FeTi intermetallic compound
I.6.1.1. Activation of FeTi
I.6.1.2. Degradation of FeTi
I.6.1.3. Hydriding kinetic of FeTi:
1.6.1.3.1. Effect of pressure sweep on the reacted fraction
1.6.1.4. Hysteresis
I.6.2. Fe _{0.9} Mn _{0.1} Ti intermetallic compound HY-STOR (102)
I.6.2.I The activation process
I.6.2.2. The effect of impure hydrogen on the efficiency of
Hydrogen storage capacity
I.6.2.3. Effect of phases on the initiation of hydrogenation of
Fe _{0.9} Mn _{0.1} Ti
I.6.2.4 Hydriding-dehydriding kinetics of Fe _{0.9} Mn _{0.1} Ti
I.6.2.5. Influence of addition of Mn in the intermetallic compound
I.6.3. Fe _{0.8} Ni _{0.2} Ti intermetallic compound (HY-STOR 103)
I.6.3.1. Hydriding kinetics and structural changes of
Fe _{0.8} Ni _{.0.2} Ti after prolonged cycling
I.6.3.1.1. Determination of structural changes by X-ray diffraction
1.6.3.1.2. Hydriding-dehydriding kinetics of FeasNia Ti

III.2.2. Effect of pressure on energy change at different
isotherms for TiFe _{0.9} Mn _{0.1}
III.2.3. Effect of pressure on energy at different isotherms for
TiFe _{0.8} Ni _{0.2}
III.2.4. Comparison between the two iIntermetallic compounds of
FeTi substitutes (from the energy loss point of View)
III,2.5. The Effect of Initial Pressure (Closed Cycles) on the Degree of Hysteresis
III.2.5.1. The case of Ti _{0.9} Mn _{0.1}
III.2.5.2. The case of TiFe _{0.8} Ni _{0.2}
III.3. Activation Using Open Cycles Method (II)
III.3.1. Hysteresis Loops During Activation for Both Intermetall Ti Fe _{0.9} Mn _{0.1} and Ti Fe _{0.8} Ni _{0.2}
III.3.1.1. Effect of open cycle number on the energy chang associated with hysteresis for TiFe _{0.9} Mn _{0.1} and TiFe _{0.8} Ni _{0.2} different isotherms.
III.3.1.2. Effect of open cycles on the degree of hysteresis
III.3.2. Relation between the cycle number and the pressur difference ΔP
III.4. The Effect of Initial Pressures on the Hysteresis for Active Fe' Substitutes (During Closed Cycling)
III.4.1. The case of TiFe _{0.9} Mn _{0.1}
III.4.1.1. The effect on the hysteresis shape
III.4.1.2. The effect on the degree of hysteresis
III.4.1.3. The effect on energy change
III.4. 2. The case of Ti Fe _{0.8} Ni _{0.2}
III.4.2.1. The effect on the hysteresis shape
III.4.2.2. The effect on the degree of hysteresis
III.42.3. The effect on energy loss
III.5. Effect of Some Parameters on the Variation of Composition
of Hydride Composition (H/M) of Intermetallic Compound
III.5.1. The effect of various initial pressures
III.5.1.1. The case of Ti Fe _{0.9} Mn _{0.1} (during activation)
III.5.1.2. The case of Ti Fe _{0.8} Ni _{0.2} (during activation)

III.5.2. Comparison between the hydride composition and
cycle number for TiFe _{0.9} Mn _{0.1} and TiFe _{0.8} Ni _{0.2}
III.5.3. Effect of Pressure on Hydrogen Uptake by Repeated Cycling
III.5.3.1. The case of TiFe _{0.9} Mn _{0.1}
III.5.3.2. The case of Ti Fe _{0.8} Ni _{0.2} (active material)
III.5.3.3. Comparison between two FeTi substitutes
III.5.4. Effect of Repeated Long Cycling on the Hydrogen
Uptake of the Two Materials
III.6. X-Ray Analysis
III.6.1. The case of TiFe _{0.9} Mn _{0.1}
III.6.2. The case of TiFe _{0.8} Ni _{0.2}
III.7. Comparison Between Constant Pressure (Isobaric) and Constant Volume (Isochoric) for the TiFe _{0.8} Ni _{0.2} .
IV. Conclusion
V. References
Arabic Summary

SUMMARY

SUMMARY

Hydrogen is an extraordinary clean, high quality fuel that could be used instead of oil and natural gas for transportation, heating and power generation when hydrogen is burned, the primary combustion is water vapor. No carbon monoxide, carbon dioxide, sulfur dioxide, or particulate mater is burned in air at high temperatures, however, nitrogen oxides are formed. Due to its low density and the difficulty of liquefaction, it was tried to store it in the form of hydrides of some intermetallic compounds with the possibility of recovery at any time by just warming or releasing the pressure above the hydride.

To study the effect of various parameters on the performance of hydrogen storage in intermetallic, a number of experiments were carried out using the intermetallic compounds TiFe_{0.9}Mn_{0.1} and TiFe_{0.8}Ni_{0.2} which were hydrided and dehydrided under constant volume and pressure. The apparatus used for the process was constructed using type 316 stainless steel.

The activation of two alloys were studied by using two different methods:

- By using the closed cycles methods (I) at various initial pressures
 ranging from 0.6 to 6.6 MPa for two alloys and the samples were
 hydrided and dehydrided without intercycle evacuation of the
 apparatus.
- By using the open cycle method (II) at specific initial pressure
 6.325 MPa, the samples were hydrided and dehydrided with intercycle evacuation of the apparatus after each cycle.