

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



HANAA ALY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



HANAA ALY





# Modulation of Resistance and Virulence of *Acinetobacter* baumannii using Some Selected Natural Products

## **MSc Thesis presented**

 $\mathbf{B}\mathbf{y}$ 

### **Mahmoud Magdy Fathy**

Bachelor of Pharmaceutical Sciences, 2014
Teaching assistant, Microbiology and Immunology Department
Faculty of Pharmacy, Ahram Canadian University

Submitted in Partial Fulfillment of the Requirements for the Master's degree in Pharmaceutical Sciences (Microbiology and Immunology)

Under the supervision of

#### Prof. Dr. Walid Faisal Elkhatib

Professor of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University Vice Dean of Faculty of Pharmacy, Galala university

#### Assist. Prof. Dr. Neveen Ahmed Abdelaziz

Assistant professor of Microbiology and Immunology Faculty of Pharmacy, Ahram Canadian University

#### Assist. Prof. Dr. Nooran Sherif Elleboudy

Assistant professor of Microbiology and Immunology Faculty of Pharmacy, Ain Shams University



# Modulation of Resistance and Virulence of *Acinetobacter* baumannii using Some Selected Natural Products

### **A Thesis**

Submitted in Partial Fulfillment of the Requirements for the

Master's degree

In Pharmaceutical Sciences (Microbiology and Immunology)

By

### **Mahmoud Magdy Fathy**

Bachelor of Pharmaceutical Sciences, 2014
Teaching assistant, Microbiology and Immunology Department
Faculty of Pharmacy, Ahram Canadian University

#### **ACKNOWLEDGEMENTS**

First and foremost, all praise be to Allah, who helped me, honored me, and led me to where I am, I can never thank him enough for his countless bounties he blessed me with. " And he found you lost and guided you " Quran 93:7. May Allah's blessing goes to His final Prophet Muhammad (peace be up on him), his family and his companions.

I would like to express my thanks to my patient and supportive supervisors without whom I would not have been able to complete this research, and without whom I would not have made it through my master's degree.

I would like to thank **Prof. Dr. Walid Faisal El khatib** for his enthusiasm, scientific supervision, his sincere support, valuable advice, and continuous guidance throughout this work.

From the bottom of my heart, I would like to say big thank you to **Ass. Prof. Neveen Ahmed Abdelaziz** for scientific supervision, throughout the revision of this thesis, offering advice and encouragement with a perfect blend of insight and humor. I'm proud of, and grateful for, my time working with her.

I am greatly grateful to **Ass. Prof. Nooran Sherif Elleboudy** for scientific supervision throughout the revision of this thesis, her constant efforts, encouragement, knowledge and follow up, her motivation have deeply helped me a lot.

I would like to express my gratitude and appreciation for **Dr. Wafaa Khalaf** for her support, guidance and overall insights in this field have made this an inspiring experience for me.

I am also thankful to Faculty of Pharmacy, Ahram Canadian university, and all its member's staff for providing great helping environment and support to work.

Last and not least Great thanks to my **parents, wife and friends** for their sincere love and support.

Mahmoud Magdy

## **Table of contents**

| 1 List of abbreviations                             |                 |
|-----------------------------------------------------|-----------------|
| 2 List of figures                                   | vii             |
| 3 List of tables                                    |                 |
| 4 Abstract                                          |                 |
| 5 Introduction                                      | 12              |
| 6 Literature review                                 |                 |
| 6.1 Antibiotic resistance crisis                    |                 |
|                                                     | 16              |
| 6.1.1.1 Intrinsic resistance                        |                 |
| 6.1.1.2 Adaptive resistance                         |                 |
| 6.1.1.3 Acquired resistance                         |                 |
| •                                                   | e in bacteria19 |
| 6.1.2.1 Modifications of the antimicrobial molecule |                 |
| 6.1.2.2 Limiting drug uptake                        |                 |
| 6.1.2.3 Modification of drug targets                |                 |
| 6.1.2.4 Efflux pumps                                |                 |
| 6.2 Acinetobacter baumannii as an urger             | nt threat26     |
| 6.2.1 A. baumannii infections                       | 27              |
| 6.2.1.1 Respiratory infections                      | 28              |
| 6.2.1.2 Blood stream infections                     | 28              |
| 6.2.1.3 Skin and soft tissue infections             | 28              |
| 6.2.1.4 Urinary tract infections                    | 29              |
| 6.2.1.5 Meningitis                                  |                 |
| 6.2.2 A. baumannii virulence factors                | 30              |
| 6.2.2.1 Outer Membrane Proteins (Porins)            | 30              |
| 6.2.2.2 Cell envelope factors (LPS and Capsule)     |                 |
| 6.2.2.3 Enzymes                                     | 3               |

## Table of contents

| 6.2.2  | .4 Motility                                                            | 31 |
|--------|------------------------------------------------------------------------|----|
| 6.2.2  | .5 Micronutrient acquisition systems                                   | 32 |
| 6.2.2  | .6 Protein secretion systems                                           | 32 |
| 6.2.2  | 7 Biofilm production and quorum sensing                                | 33 |
| 6.2.2  | .8 Resistance to desiccation and disinfection                          | 33 |
| 6.2.3  | Antibiotic Resistance mechanisms in A. baumannii                       | 34 |
| 6.2.3  | .1 β-lactams                                                           | 35 |
| 6.2.3  | 2 Fluoroquinolones                                                     | 37 |
| 6.2.3  | .3 Aminoglycosides                                                     | 38 |
| 6.2.3  | 4 Colistin                                                             | 39 |
| 6.3 St | rategies to combat antibiotic resistance crisis                        | 40 |
| 7 Mate | rials and Methods                                                      | 46 |
| 7.1 M  | aterials                                                               | 46 |
| 7.1.1  | Culture Media                                                          | 46 |
| 7.1.2  | Antibiotics                                                            | 46 |
| 7.1.3  | Chemicals                                                              | 47 |
| 7.1.4  | Kits and buffers                                                       | 48 |
| 7.1.5  | Primers                                                                | 48 |
| 7.1.6  | Devices and equipment                                                  | 50 |
| 7.1.7  | Buffers and reagents                                                   | 51 |
| 7.1.7  | .1 Phosphate buffer (0.01M, pH7.2)                                     | 51 |
|        | .2 Phosphate buffered- saline (PBS, pH 7.4) (Biswas and Mettlach 2019) |    |
| 7.1.7  | .3 Tris-Acetate EDTA (TAE buffer) (1X)                                 | 51 |
| 7.1.7  | .4 Ethidium bromide (10mg /ml)                                         | 52 |
| 7.1.7  | .5 Agarose gel (1.5%)                                                  | 52 |
| 7.1.7  | .6 Resazurin Sodium Salt (0.015%) (Elshikh et al. 2016).               | 52 |
| 7.1.7  | 7 Crystal violet stain (0.1%)                                          | 52 |
| 7.1.7  | .8 Crystal violet stain (0.4%)                                         | 52 |
| 7.1.7  | 9 Glutaraldehyde 25 % solution (stock)                                 | 53 |
| 7.1.7  | •                                                                      |    |
| 7.1.7  | .11 Buffer solution sodium cacodylate (0.2 M) (stock)                  | 53 |

|   | 7.1.7.1      | Buffer solution sodium cacodylate (0.1 M) (working solution)                        | 53 |
|---|--------------|-------------------------------------------------------------------------------------|----|
|   | 7.1.7.1      | 3 Osmium tetroxide solution (2%) (stock)                                            | 53 |
|   | 7.1.7.1      | Osmium tetroxide solution (1%) (working solution)                                   | 53 |
| 7 | 7.2 Me       | ethods                                                                              | 54 |
|   | 7.2.1        | Bacterial isolates                                                                  | 54 |
|   | 7.2.1.1      | Isolate identification                                                              | 54 |
|   | 7.2.1.2      | 2 Genomic DNA extraction                                                            | 54 |
|   | 7.2.1.3      | PCR amplification                                                                   | 54 |
|   |              | Gel electrophoresis                                                                 |    |
|   | 7.2.1.5      | 5 Isolate preservation                                                              | 54 |
|   | 7.2.2        | Antibiogram of A. baumannii isolates                                                | 55 |
|   |              | Inoculum preparation                                                                |    |
|   | 7.2.2.2      | 2 Serial dilution of antibiotics                                                    | 55 |
|   | 7.2.3        | Microtiter plate biofilm formation assay                                            | 55 |
|   |              | Inoculum preparation                                                                |    |
|   | 7.2.3.2      | 2 Staining technique                                                                | 55 |
|   | 7.2.4        | PCR amplification of $\beta$ -lactamase and biofilm-related genes                   | 56 |
|   | 7.2.5        | Antibacterial activities of cinnamic and gallic acids                               | 56 |
|   | 7.2.6        | Antibiofilm activities of cinnamic and gallic acids at sub-inhibitory trations      |    |
|   | 7.2.7        | Growth rate analysis                                                                |    |
|   | 7.2.8 acids  | Microscopic Analysis of antibiofilm activities of cinnamic and galli                |    |
|   | 7.2.9 cinnam | Scanning Electron Microscope analysis of antibiofilm activities of and gallic acids | 58 |
|   | 7.2.10       | Antibiotic resistance modulating effect of cinnamic and gallic acids                | 58 |
|   | 7.2.11       | Quantitative Real-Time PCR                                                          | 59 |
|   | 7.2.12       | Statistical analysis                                                                | 60 |
|   | 7.2.13       | Ethical approval                                                                    | 60 |
| 8 | Resul        | ts                                                                                  | 61 |
|   |              |                                                                                     |    |

| 8.2 Co-existence of antimicrobial resistance                                                           |
|--------------------------------------------------------------------------------------------------------|
| 8.4 Relationship between antibiotic susceptibility and biofilm-forming ability                         |
| ability                                                                                                |
| <ul> <li>8.5 Antibiotic-resistance correlations of multidrug resistant A. baumannii isolates</li></ul> |
| phenotypic correlations                                                                                |
| biofilm-related genes                                                                                  |
| 8.9 The Anti-biofilm activities of gallic and cinnamic acids7                                          |
|                                                                                                        |
| 8.10 Impact of resistance profiles and biofilm-related genes on biofilm                                |
| susceptibility to gallic and cinnamic acids7                                                           |
| 8.11 Microscopic Analysis of antibiofilm activities of cinnamic and gallic acids 79                    |
| 8.12 SEM Analysis of antibiofilm activities of cinnamic and gallic acids.8                             |
| 8.13 Antibiotic resistance modulating effect of cinnamic and gallic acids8                             |
| 8.14 Quantitative Real-Time PCR8                                                                       |
| 9 Discussion8                                                                                          |
| 10 Summary9                                                                                            |
| 11 Conclusion9                                                                                         |
| 12 References9                                                                                         |

## 1 List of abbreviations

| ABC family           | ATP-Binding Cassette family                                   |
|----------------------|---------------------------------------------------------------|
| ACB complex          | Acinetobacter calcoaceticus –Acinetobacter baumannii complex  |
| AceI                 | Acinetobacter chlorhexidine efflux protein                    |
| AMEs                 | Aminoglycoside modifying enzymes                              |
| AmpC                 | Ambler class C cephalosporinases                              |
| ATCC                 | American Type Culture Collection                              |
| bap                  | Biofilm-associated proteins                                   |
| bla <sub>NDM</sub>   | New Delhi metallo-beta-lactamase                              |
| $bla_{ m oxa}$       | Oxacillinase beta lactamase                                   |
| bla <sub>PER-1</sub> | Pseudomonas aeruginosa Extended spectrum RND-1 Beta lactamase |
| bla <sub>VIM</sub>   | Verona integrin associated metallo-beta-lactamase             |
| bp                   | Base pair                                                     |
| c DNA                | Complementary Deoxyribonucleic acid                           |
| CDC                  | Centers for disease control and prevention                    |
| CFU                  | Colony forming unit                                           |
| CLSI                 | Clinical and laboratory standard institute                    |
| CpaA                 | glycan-specific adamalysin-like protease                      |
| csuE                 | chaperon/usher pilus system                                   |
| СТ                   | Cycle threshold                                               |
| DMSO                 | Dimethyl sulfoxide                                            |
| DNA                  | Deoxyribonucleic acid                                         |

### List of abbreviations

| EPSs        | Extracellular polymeric substances            |
|-------------|-----------------------------------------------|
| I           | Intermediate                                  |
| Kb          | Kilo base                                     |
| LPS         | Lipopolysaccharide                            |
| MATE family | Multidrug and Toxic compound Extrusion family |
| MDR         | Multiple drug resistance                      |
| MFS         | Major Facilitator Superfamily                 |
| MIC         | Minimum inhibitory concentration              |
| nfs         | nitrofurantoin activating genes               |
| ODc         | Optical density cut-off value                 |
| omp         | Outer membrane protein                        |
| PBP         | Penicillin binding protein                    |
| PBS         | Phosphate buffered saline                     |
| PCR         | Polymerase chain reaction                     |
| PDR         | Pan drug resistant                            |
| PetN        | Phosphoryl ethanolamine                       |
| PNAG        | poly-β-1,6-N-acetylglucosamine                |
| Qnr         | Quinolone resistance                          |
| qPCR        | Quantitative Polymerase chain reaction        |
| QQ          | Quorum quenching                              |
| QS          | Quorum sensing                                |
| R           | Resistant                                     |
| RNA         | Ribonucleic acid                              |
| RND family  | The Resistance-Nodulation-Division            |

### List of abbreviations

| ROS        | Reactive oxygen species           |
|------------|-----------------------------------|
| S          | Sensitive                         |
| SEM        | Scanning Electron Microscope      |
| SMR family | Small Multidrug Resistance family |
| T2SS       | type II secretion system          |
| T6SS       | type VI secretion system          |
| TAE        | Tris-Acetate EDTA                 |
| TSB        | Trypticase soya broth             |
| VAP        | Ventilator associated pneumonia   |
| WFI        | Water for injection               |
| WHO        | World health organization         |

## 2 List of figures

| Figure 1. Timeline showing the decade new classes of antibiotic reached the clinic, sources of almost known antibiotic classes, and the first reports of resistant isolates                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Mode of action of classes of clinically used antibiotics                                                                                                                                                                                                                                |
| Figure 3. Pathways of horizontal gene transfer                                                                                                                                                                                                                                                    |
| Figure 4. Mechanisms of antibiotic resistance                                                                                                                                                                                                                                                     |
| Figure 5. General structure of main efflux pump families (Reygaert 2018)                                                                                                                                                                                                                          |
| Figure 6. The dynamic microbiological nature of <i>Acinetobacter baumannii</i> derives from an interaction between the associated infections, wide range of virulence factors, multidrugresistance, and animal/environmental spread.                                                              |
| Figure 7. An illustration of <i>Acinetobacter baumannii</i> virulence determinants and their functions                                                                                                                                                                                            |
| Figure 8. Resistance mechanisms of <i>A. baumannii</i> to antimicrobial agents                                                                                                                                                                                                                    |
| Figure 9. Sensitivity of the 90 <i>A. baumannii</i> isolates to different antibiotics as analyzed by MIC.                                                                                                                                                                                         |
| Figure 10. Antibiotic-antibiotic correlations. Correlogram representing correlation coefficients between each pair of antibiotics according to the patterns of susceptibility of the <i>A. baumannii</i> 90 isolates                                                                              |
| Figure 11. (A) Dendrogram signifying the clustering relatedness of 30 MDR <i>A. baumannii</i> isolates based on their PCR results for biofilm-related genes. (B) Tabular presentation of the PCR screening results of biofilm associated genes and corresponding mean OD <sub>630</sub> values 70 |
| Figure 12. Violin plots showing minimum inhibitory concentrations (mg/mL) of cinnamic and gallic acids against 30 MDR <i>A. baumannii</i> isolates                                                                                                                                                |
| Figure 13. Boxplots displaying biofilm reduction (%) caused by sub-inhibitory concentrations (½ MICs and ¼ MICs) of cinnamic and gallic acids                                                                                                                                                     |
| Figure 14. Inhibitory effect of cinnamic and gallic acids on biofilm formation of each of the 30 MDR <i>A. baumannii</i> isolates                                                                                                                                                                 |
| Figure 15. Antibiofilm activities of sub-MICs of cinnamic and gallic acids. Scatter plot representing biofilm reduction (%) for each sample                                                                                                                                                       |

## List of figures

| Figure 16 A. Bacterial growth curve of strong biofilm formers of <i>A. baumannii</i> in the presence of sub-inhibitory concentrations (½ MICs and ¼ MICs) of cinnamic&gallic acids, along with the untreated growth controls.                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 16 B. Bacterial growth curve of weak biofilm formers of <i>A. baumannii</i> in the presence of sub-inhibitory concentrations (½ MICs and ¼ MICs) of cinnamic&gallic acids, along with the untreated growth controls.                               |
| Figure 17. Light microscopic visualization of (A) Untreated strong biofilm-former <i>A. baumannii</i> isolate, (B) After a 24-hr treatment with sub-MIC cinnamic acid, and (C) a 24-hr treatment with sub-MIC gallic acid                                 |
| Figure 18. Scanning electron microscopy images of (A) Untreated strong biofilm-former <i>A. baumannii</i> isolate, (B) After a 24 h treatment with sub-MIC cinnamic acid, and (C) a 24 h treatment with sub-MIC gallic acid. Magnification x10,000        |
| Figure 19. Violin plots showing MICs of the selected 30 MDR isolates against colistin in presence/ absence of cinnamic or gallic acids                                                                                                                    |
| Figure 20. Violin plots showing MICs of the selected 30 MDR isolates against imipenem in presence/ absence of cinnamic or gallic acids                                                                                                                    |
| Figure 21. Violin plots showing MICs of the selected 30 MDR isolates against doxycycline in presence/ absence of cinnamic or gallic acids                                                                                                                 |
| Figure 22. Violin plots showing MICs of the selected 30 MDR isolates against amikacin in presence/ absence of cinnamic or gallic acids                                                                                                                    |
| Figure 23. Violin plots showing MICs of the selected 30 MDR isolates against levofloxacin in presence/ absence of cinnamic or gallic acids                                                                                                                |
| Figure 24. Fold expression values of $bap$ gene in control and treated samples with gallic acid (½ MIC). Fold expression values proved that gallic acid (½MIC) substantially down-regulated $bap$ genes in all five strong biofilm formers ( $p$ =0.001). |
| Figure 25. Fold expression values of $csuE$ gene in control and treated samples with gallic acid (½MIC). Fold expression values proved that gallic acid (½MIC) substantially downregulated $csuE$ genes in all five strong biofilm formers ( $p$ =0.003)  |
| Figure 26. Fold expression values of $ompA$ gene in control and treated samples with gallic acid (½MIC). Fold expression values proved that gallic acid (½MIC) substantially downregulated $ompA$ genes in all five strong biofilm formers ( $p$ =0.001)  |