

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

B11170

PRODUCTION OF TOMATO HYBRIDS FOR LOW TUNNEL PRODUCTION

BY

Mohammed Abou El-Fotouh Mohammed Selim B. Sc. (Agric. Sci.), Cairo University, 1994

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

VEGETABLE CROPS

Department of Vegetable Crops
Faculty of Agriculture
Cairo University

APPROVAL SHEET

Production of Tomato Hybrids for Low Tunnel Production

Name:	Mohammed Abou El-Fotouh Mohammed Selim	
	A Thesis Submitted for the Degree of	
	M. Sc. (Agric.)	
	in	
	Vegetable Crops	
This thesis ha	as been approved by:	
Prof. Dr. Khali	fa Attia Okasha.	•

Prof. Dr. Mohamed Abdel-Mageed Badawi J. M. A. Badawi.

Dr. Khaled El-Sayed Ali Lhald & Al.

Committee in charge

Date: 14 / 11 / 2001

Title:

Name of cano	lidate Mohammed Abou El-Fotouh Mohammed Selim Degree M. Sc.
Title of Thes	is Production of Tomato Hybrids for Low Tunnel Production.
	<u> </u>
Supervisors	Prof. Dr. Ahmed Abdel - Moneim Hassen,
Dr. K	haled El-Sayed Ali , Prof. Dr. Mahasen Abdel-Hakim Mohamed
Department	Vegetable Crops
Branch	Approval 14/11/2001

ABSTRACT

This study was conducted in research facilities of the Horticulture Research Institute during the period from 1997 to 2000. Fifteen tomato true-breeding cvs. were evaluated along with the commercial hybrid Alwadi in the 1997/1998 winter season under low tunnels as potential parents for hybrids and genetic studies. Seven cvs. were chosen as parents to produce 21 F₁ hybrids in one direction. The 21 F₁ hybrids were evaluated along with hybrid Alwadi and truebreeding cv. Supermarmande as controls during the 1998/1999 and 1999/2000 winter seasons under low tunnels using drip-irrigation system to study yield and its components and fruit physical and chemical characters. Generally, in the two seasons, the hybrid Campbell 1327 VF × Scotia was superior in some characters having the highest values of fruit set percentage (FS), total yield (TY), and marketable yield (MY), but it was second in early yield (EY). It's fruit weight (FW) was about 100g. It also had round fruits having medium values of each of fruit firmness (FF), number of locules (NL), total soluble solids (TSS), titratable acidity percentage (TA), and ascorbic acid content (AA). Five crosses were made for genetic studies, viz., Supermarmande × Apex 1000 and Supermarmande × 506 Bush for studies on FS percentage, Apex 1000 × Siletz and Mountain Gold VFF × Siletz to study the inheritance of FF, and Scotia (red fruits) × Mountain Gold VFF (tangerine fruits) to study the inheritance of fruit B-carotene and lycopene contents. Parental, F₁, F₁r, F₂, and backcross populations of each cross were evaluated under low tunnels in the 1999/2000 winter season. Percentage FS was found to be controlled by one and 4 pairs of genes in the two above crosses, respectively, with over dominance of high FS percentage in the first cross and partial dominance of the low FS percentage in the second one. BSH estimates were 73.6% and 23.7% in the two crosses, respectively. Fruit firmness was found to be controlled by 3 and 8 pairs of genes in the two above crosses, respectively, with partial dominance of the low FF character. BSH estimates were 74.9% and 85.% in the two crosses, respectively. Fruit β-carotene and lycopene contents were found to be controlled by 2 pairs of genes for each pigment with partial dominance of low over high content of each. BSH estimates were 78.5% and 82.7% for fruit β-carotene and lycopene contents, respectively.

Key words: Tomato, *Lycopersicon esculentum*, Tomato hybrids, Low tunnel hybrids, Inheritance, Heritability, Fruit set, Firmness, β-carotene, Lycopene.

Use Other Side if Necessary

iv

Alud A. H

Khaled E. Ali

ACKNOWLEDGEMENT

I would like to express my sincere thanks and appreciations to Dr. Ahmed Abdel-Moneim Hassan, Prof. of Vegetable Crops, Faculty of Agriculture, Cairo University for his supervision, kind guidance, and positive criticism during the course of this investigation and writing of the manuscript.

The author wishes to express his sincere gratitude and appreciations to Dr. Khaled El-Sayed Ali, Associate Prof. of Vegetable Crops, Faculty of Agriculture, Cairo University for his supervision, valuable guidance, continuous advice and help during the course of this work, and writing of the manuscript.

I would like to express my deepst gratitude to Dr. Mahasen Abdel-Hakim Mohamed, Prof. and Chairwoman of Self-Pollinated Vegetable Crops Department, Horticulture Research Institute, Agricultural Research center for her supervision, continuous help and criticism throughout this investigation and during the preparation of this manuscript.

Thanks are also extended to the staff members of the Vegetable Crops
Department, Faculty of Agriculture, Cairo University and the research staff of
the Department of Protected Cultivation, Horticulture Research Institute,
Agricultural Research Center for their help, encouragement and the facilities
provided during the work of this thesis.

To my family, my sisters, and my uncle, Dr. Fouad Mohammed Selim, Prof. of Agricultural Extension, Agricultural Extension Research Institute, I am particularly and deeply grateful for their support and encouragement.

LIST OF ABBREVIATIONS

AA : ascorbic acid

AFW: average fruit weight

AMVRF: Ali Mubarak Village Research Farm

BSH : broad sense heritability

EP : experimental plot

EY: early yield

FF : fruit firmness

FS: fruit set

FSI: fruit shape index

KVRF : Kaha Vegetable Research Farm

MY: marketable yield

NL: number of locules

PH: plant height

RCBD: randomized complete block design

STHRS: South El-Tahrir Horticultural Research Station

TA: titratable acidity

TSS: total soluble solids

TY: total yield

CONTENTS

		Page
LI	ST OF TABLES	ix
LI	ST OF FIGURES	xii
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2	2.1. Germplasm Characteristics	3
	2.1.1. Germplasm releases	3
	2.1.2. Germplasm evaluation	4
2	2.2. Genetic Studies	8
	2.2.1. Fruit set percentage under low temperatures	8
	2.2.2. Fruit firmness	9
	2.2.3. Fruit color	11
3.	MATERIALS AND METHODS	15
3	3.1. Evaluation of Parental Genotypes	15
	3.1.1. Germplasm evaluated	15
	3.1.2. Experimental layout	15
	3.1.3. Characters measured	16
	3.1.3.1. Foliage and fruit set	16
	3.1.3.2. Yield	16
	3.1.3.3. Fruit quality	16
	3.2. Production and Evaluation of F ₁ Hybrids	17
	3.2.1. Choice of parents and hybrid seed production	17
		19
	3.2.2. Evaluation of F ₁ hybrids	19

		Page
3.	3. Genetic Studies	19
	3.3.1. Experimental layout	19
	3.3.2. Crosses and characters studied	20
	3.3.3. Genetic parameters estimated	20
4.	RESULTS AND DISCUSSION	24
4	.1. Evaluation of Parental Genotypes	24
	4.1.1. Foliage and fruti set	24
	4.1.2. Yield	24
	4.1.3. Fruit quality	26
4	.2. Evaluation of F ₁ Hybrids	30
	4.2.1. Foliage and fruit set	30
	4.2.2. Yield	33
	4.2.3. Fruit quality	36
4.	3. Genetic Studies	44
	4.3.1. Fruit set percentage	44
	4.3.2. Fruit firmness	52
	4.3.3. Fruit β-carotene content	60
	4.3.4. Fruit lycopene content	64
5-	SUMMARY	69
6-	LITERATURE CITED	76
	ARABIC SUMMARY	

LIST OF TABLES

		Page
3.1	Average minimum and maximum temperatures (°C)	
	during the experimental period of the genetic study	
	both under low tunnels and in the open air	21
4.1	Plant height, fruit set percentage, and early, total, and	
	marketable yield of tomato genotypes evaluated in the	
	1997/1998 winter season	25
4.2	Fruit quality of tomato genotypes evaluated in the	
	1997/1998 winter season	27
4.3	Plant height and fruit set percentage of tomato	
	genotypes evaluated in the 1998/1999 and 1999/2000	
	winter seasons	31
4.4	Early, total, and marketable yield (ton/feddan) of	
	tomato genotypes evaluated in the 1998/1999 and	
	1999/2000 winter seasons	34
4.5	Fruit physical characters of tomato genotypes	
	evaluated in the 1998/1999 and 1999/2000 winter	
	seasons	37
4.6	Fruit chemical constituents of tomato genotypes	
	evaluated in the 1998/1999 and 1999/2000 winter	
	seasons	41
4.7	Distribution, mean, and variance of fruit set percentage	
	of parental, F ₁ , F ₁ r, F ₂ , BCP ₁ , and BCP ₂ populations of	
	the cross Supermarmande × Apex 1000	45

		Page
4.8	Quantitative genetic parameters of fruit set percentage	
	in the cross Supermarmande × Apex 1000	46
4.9	Distribution, mean, and variance of fruit set percentage	
	of parental, F ₁ , F ₁ r, F ₂ , BCP ₁ , and BCP ₂ populations of	
	the cross Supermarmande × 506 Bush	49
4.10	Quantitative genetic parameters of fruit set percentage	
	in the cross Supermarmande × 506 Bush	50
4.11	Distribution, mean, and variance of fruit firmness of	
	parental, F ₁ , F ₁ r, F ₂ , BCP ₁ , and BCP ₂ populations of	
	the cross Mountain Gold VFF × Siletz	53
4.12	Quantitative genetic parameters of fruit firmness in the	
	cross Mountain Gold VFF × Siletz	54
4.13	Distribution, mean, and variance of fruit firmness of	
	parental, F ₁ , F ₁ r, F ₂ , BCP ₁ , and BCP ₂ populations of	
	the cross Apex 1000 × Siletz	57
4.14	Quantitative genetic parameters of fruit firmness in the	
	cross Apex 1000 × Siletz	58
4.15	Distribution, mean, and variance of fruit β -carotene	
	content of parental, F ₁ , F ₁ r, F ₂ , BCP ₁ , and BCP ₂	
	populations of the cross Scotia × Mountain Gold VFF	61
4.16	Quantitative genetic parameters of fruit β-carotene	
	content in the cross Scotia × Mountain Gold VFF	62

		Page
4.17	Distribution, mean, and variance of fruit lycopene	
	content of parental, F ₁ , F ₁ r, F ₂ , BCP ₁ , and BCP ₂	
	populations of the cross Scotia × Mountain Gold VFF	65
4.18	Quantitative genetic parameters of fruit lycopene	
	content in the cross Scotia × Mountain Gold VFF	66