

D16958

استجابة الجهاز الدوري للتمرينات الهوائية في مرضى السكر المصحوب بالتهاب الجهاز العصبي اللاإرادي

رسالة مقدمة

توطئة للحصول على درجة الماجستير في العلاج الطبيعي

مقدمة من

محمد عبد الستار محمد حميدة

بكالوريوس العلاج الطبيعي ١٩٩٦

هيئة الإشراف

د. عوني فؤاد رحمي
استاذ مساعد بقسم العلاج الطبيعي الضطرابات الجهاز الدوري و المتنفسي و المستين. كلية العلاج الطبيعي - جامعة القاهرة

أ.د. أيمن فتحي قداح استاذ الأمراض الباطنة و القلب ـكلية الطب. جامعة القاهرة

د. السيد عبد الحميد أبو شئب
مدرس بقسم العلاج الطبيعي الاضطرابات الجهال الدوري و التنفسي و السنين
كلية العلاج الطبيعي - حامعة القاهرة

كلية العلاج الطبيعي جامعة القاهرة ۲۰۰۲

Acknowledgment

First and above of all, I would like to kneel thanking Allah,

I'd like to thank also *Dr*: AWNY. F. RAHMY, Assistant Professor of Physical Therapy, Department of Physical Therapy for Cardiopulmonary Disorders and Geriatric, Faculty of Physical Therapy, Cairo University, for his great co-operation with me and advice for me through the conduction of this study.

My gratitude appreciation and deep thanks to *Dr*: AYMEN. F. KADDAH, Professor of Cardiology, Faculty of Medicine, Cairo University, for his valuable advice, comments and kind supervision and co-operation during this study.

I'd like also to thank *Dr*: ALSAYD ABD EL-HAMEED. A. ABU-SHANB, Lecture in Department of Physical Therapy for Cardiopulmonary Disorders and Geriatric, Faculty of Physical Therapy, Cairo University, for his great co-operation with me and useful advice for me during this work.

I'd like to express my sincere thanks to Dr: MOHAMED SHALTOUT, consultant of internal medicine and diabetes and all members of National Institute for Diabetes and Endocrine for their co-operation with me.

I'd like to express my sincere thanks to all patients who shared in this study.

Contents

ACKNOWLEDGEMENT []]
LIST OF ABBREVIATIONSVI
LIST OF TABLESVIII
LIST OF FIGURES IX
LIST OF APPENDIXESX
CHAPTER I: INTRODUCTION
Statement of the problem 3
Aim of the study 3
Significance of the study 3
Hypothesis 3
CHAPTER II: REVIEW OF LITERATURE
Diabetes mellitus 4
Pathology4
Etiology and Pathogenesis of type II and related disorders6
Diabetic autonomic neuropathy 9
Orthostatic hypotension
Laboratory evaluation of autonomic neuropathy
Necessary testing -the evaluation of cardiac vagal tone
Treatment of diabetic neuropathy25

Electrocardiograph (ECG)	29
Exercise precautions and recommendations for patients autonomic neuropath	ıy 36
Effects of diabetic autonomic neuropathy on exercise risk	38
Cardiovascular Autonomic Neuropathy	40
Exercise Prescription	47
CHAPTER III: MATERIAL AND METHODS	
Subjects	-52
Instrumentation	52
Procedure	. 56
Statistical Analysis	- 57
CHAPTER IV: RESULTS	
Clinical Data of Group A	65
Clinical Data of Group B	70
CHAPTER V: DISCUSSION	77
CHAPTER VI: SUMMURY AND CONCLUSION	86
REFERENCES	89
APPENDIXES	108
ARABIC SUMMURY	

.

List of Abbreviations

ALC -----AcetylLCarnitine

AVN - - - - - Atrio-ventricular node

BMI - - - - - Body mass index

CAN ----- Cardiac autonomic neuropathy

COX - - - - - Cyclooxygenasc

DBP --- - - Diastolic blood pressure

DM ---- - Diabetes mellitus

ECG ----- Electrocardiograph

EFA - - - - - Essential fatty acid

E/I ratio + - - - Expiration to inspiration ratio

EPO - -- - - Evening Primrose Oil

FBG - - - - - Fasting blood glucose

GLA --- - - - Gamma-linolenic acid

HR - - - - - Heart rate

HR_{max} = - - - - Maximum Heart rate

IDDM = - - - - Insulin dependant diabetes mellitus

NIDDM - - - - Non-insulin dependant diabetes mellitus

OR --- - - Odds ratio

PGI2, - - - - - Prostaglandins

PVD --- - Peripheral vascular diseases

SAN -- - - - - Sino-atrial node

SBP - - - - - Systolic blood pressure

SMBG ---- Self-monitoring of blood glucose

 $TxA2 = - - - Thromboxane \Lambda2$

 $VO_{2max} = - - - = Maximal O_2$ consumption

List of Tables

Table	Page
1. Mean values of the weight, BMI of group (A)	66
2. Mean values of Systolic Blood Pressure (SBP) in Group (A)	67
3. Mean values of Diastolic Blood Pressure (DBP) group (A)	68
4. Mean values of Heart rate (HR) in Group (A)	69
5. Mean values of body weight and, BMI group (B)	71
6. Mean values of Systolic Blood Pressure in Group (B)	 72
7. Mean values of Diastolic Blood Pressure in Group (B)	<i>73</i> .
8. Mean values of Heart rate in Group (B)	74
9. Mean values of Fasting blood glucose in both groups	 75
10. Mean values of Q-T interval of both groups	76

List of Figures

	Page
1. Premature-ventricular Contraction	35
2. Computerized ECG, Sphygmomanometer and Stethoscope	54
3. Electronic Treadmill	55
4- Heart rate from supine	58
5- Heart rate from standing	59
6- Blood pressure from supine	60
7- Blood pressure from standing	61
8- ECG and Stress ECG for each patient	62
9- Patient during exercise training	63
10- Mean values of body mass index for both groups	66
11- Mean values of Systolic Blood Pressure (SBP) in Group (A)	67
12- Mean values of Diastolic Blood Pressure (DBP) group (A)	68
13- Mean values of Heart rate (HR) in Group (A)	69
14- Mean values of Systolic Blood Pressure in Group (B)	7 2
15- Mean values of Diastolic Blood Pressure in Group (B)	73
16- Mean values of Heart rate in Group (B)	74
17- Mean values of Fasting blood glucose in both groups	75
18- Mean values of Q-T interval of both groups	76

List of Appendixes

	Page
1. Body Mass Index BMI and Fasting Blood Glucose FBG for groups	108
2. Heart Rate for both groups	109
3. Systolic Blood Pressure SBP for Both Groups	110
4. Diastolic Blood Pressure DBP for Both Groups	111
5. Q-Tc interval of Both Groups	112

Chapter I Introduction

Introduction

Diabetes Mellitus is a chronic, multifaceted disorder caused by reduction in insulin action and secretion or the both, it's characterized by hyperglycemia and disruption of the metabolism of carbohydrates, fats and proteins, over time, it results in small and large vessels complications and neuropathies. This disease is ranked as the third cause of death and leading factor of blindness (American Diabetes Association 1998).

Since 1979, diabetes has been classified according to the various types of glucose abnormalities, this classification system not only provide for the insulin dependant diabetes mellitus (IDDM) and non-insulin dependant diabetes mellitus (NIDDM), but also, includes persons with impaired glucose tolerance abnormalities (Goodman 1990).

The Complications of diabetes mellitus are macro and microvscular disorders, central, Peripheral and autonomic neuropathy. The autonomic neuropathy is the most common complication of the long standing diabetes, It's due to the accumulation of sorbitol in nerve cell that result in abnormal fluid and electrolyte shift, which causes nerve cell dysfunction, neuropathy may affect the central, peripheral and autonomic nervous system (Stansberry et al., 1994).

Diabetic Neuropathy is one of the most common complications of longstanding diabetes mellitus. The prevention of this poorly understood "syndrome" is very crucial and starts from the time of the diagnosis. The symptoms are numbness, irritation and pain, usually in the extremities. The pain can be severe and effectively destroy the quality of one's life (Steven et al; 1991).

Postural hypotension is defined as a fall in systolic blood pressure than 20 mmHg or diastolic blood pressure than 10 mmHg or more, it occurs in diabetic patients as a consequence of efferent sympathetic vasomotor denervation that cause reduced vasoconstriction of the splanchic and other peripheral vascularbeds (Aristidon 1998).

Postural hypotension is caused by the failure of reflex vasoconstriction in the splanchnic area and the subcutaneous tissues, its extent is related to the severity of baroreflex dysfunction (Kahn et al; 1988). As a result of this vasoconstrictive dysfunction, the blood pressure response to exercise does not increase to expect levels in these patients. A lower mean systolic blood pressure response at comparable relative exercise workloads in patients with autonomic neuropathy compared to diabetic subjects without this complication has been reported (Sisson et al; 1987). However, they also found these patients occasionally have severely exaggerated increases in blood pressure (Schneider et al; 1984).

Nearly everyone with diabetes can derive some benefit from an exercise program, although not all benefits will be realized by each person with diabetes. Both health care professionals and patients with diabetes need to remember this when determining the components of an exercise program. When chronic complications of diabetes develop the benefits and risks of exercise must be carefully considered maximize the benefits and assure safety. This is especially

true when evaluating the use of exercise in diabetes complicated by autonomic neuropathy (Devlin and Ruderman; 1995).

Statement of the Problem

Does acrobic exercise training has an effect on cardiovascular system in diabetic patients with and without autonomic neuropathy?

Aim of the Study

To evaluate the effect of aerobic exercises training on the cardiovascular changes in diabetic patients with autonomic neuropathy.

Significance of the study

Most studies were done to investigate autonomic neuropathy, its clinical features and impacts. Cardiovascular disorders and postural hypotension are the most clinical features of diabetic neuropathy, which may be the most common causes of recurrent falling, so, it's assumed that this study will provide a significant scientific basis used for constructing effective program for improving autonomic neuropathy, in turn will lead to reduce secondary complications such as recurrent falling and bed redden problems (Craig 1994).

Hypothesis

There are no significant changes in cardiovascular response to aerobic exercise training in diabetic patients with autonomic neuropathy.

Chapter II Review of Literature