

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

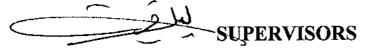
شبكة المعلومات الجامعية

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

B16634

EVALUATION OF MULTIAGENT CHEMOTHERAPY AND RADIOTHERAPY IN ADVANCED STAGES HODGKIN'S DISEASE


THESIS

Submitted for partial fulfillment of M.D. degree in

RADIATION ONCOLOGY

By

Alaa Mohamed Mohamed Maria M.B.B.Ch., M.Sc.

Prof. Dr.

Layla A. S. Korashy

Prof. of Clinical Oncology and
Nuclear Medicine
Faculty of Medicine
Tanta University

Prof. Dr.

Hanem A. Sakr

Prof. & Head of Clinical Oncology and
Nuclear Medicine Department
Faculty of Medicine
Mansoura University

Prof. Dr.

Sameh S. Shamaa

Prof. & Head of Medical Oncology & Hematology Unit
Faculty of Medicine

Mansoura University

Prof. Dr.

Fawzy Z. Sherif

Assis. Prof. & head of Clinical Oncology and Nuclear Medicine Department

Faculty of Medicine

Tanta University

FACULTY OF MEDICINE

TANTA UNIVERSITY

2003

ACKNOWLEDGEMENT

First, I wish to express my deepest gratitude and deepest thanks to **ALLAH** whose magnificent help is the first factor in every thing I can do in life.

I would like to express my thanks and great appreciation to Prof. Dr. Layla A. Korashy, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Tanta University, for her kind help and creative support throughout the whole work.

Also, I would like to express my sincere appreciation and deepest gratitude to the noble character of Prof. Dr. Hanem A. Sakr, Professor and Head of Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Mansoura University, for giving me the privilege of working under her supervision, meticulous guidance and golden advises derived from her wide experience.

I am also grateful to Prof. Dr. Sameh S. Shamaa, Professor and Head of Medical Oncology and Hematology Unit, Faculty of Medicine, Mansoura University, for his kind constructive supervision, help and guidance to fulfill this work.

I am indebted to Prof. Dr. Fawzy Z. Sherif, Assis. Professor and head of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Tanta University, for his continuous encouragement and valuable advises.

Finally, great thanks to every one learned, advised, helped and supported me to fulfill this thesis.

CONTENTS

Introduction and Aim of the Work	1-2
Review of the literature	3-75
Pathology	3-12
Clinical Presentation	13-17
Diagnostic Work up	18-26
Staging System	27-28
Prognostic factors	29-34
Radiation Therapy	35-44
Chemotherapy	45-52
Combined Modality Treatment	53-55
Salvage Treatment	56-61
Immunotherapy	62-64
Follow up	
Complications	66-75
Material and Methods	76-79
Results	80-108
Discussion	109-116
Summary and Conclusion	117-118
References	
Arabic summary	· .

LIST of TABLES

Table (1): Classification of Hodgkin's disease	
Table (2): Morphologic and immunophenotyic features of nodular Lympho	cyte
predominant and classic HD	-
Table (3): Definition of treatment groups in two large cooperative trial groups	
Table (4): International prognostic factors project	
Table (5): Alkylating agent containing regimens	
Table (6): Anthracyclines containing regimens	
Table (7): Alternating, hybrid or combined chemotherapy regimens	
Table (8): Baseline and escalated BEACOPP regimens	
Table (9): Conventional dose salvage combination chemotherapy programs for relapse	a or
resistant Hodgkin's disease	
Table (10): Salvage regimens for HD at conventional dosages	
Table (11): High dose chemotherapy regimens and bone marrow transplantation	
Table (12): Stanford-V protocol	-
Table (13): COPP protocol	-
Table (14): Patient characteristics of 40 cases of Hodgkin's disease	
Table (15): Relation between line of treatment and stage among 40 patients with Hodgl	kin's
disease	
Table (16): Overall response to treatment (16 patients)	
Table (17): Complete response according to pretreatment characteristics	
Table (18): Pattern of relapse in patients with complete response	
Table (19). Acute treatment toxicity for the whole 40 patients	
Table (20). The overall survival rate according to the chemotherapeutic regimen	(10
natients)	
Table (21): Overall survival rate for the two groups according to stage	
Table (22): The OA rate for the two groups according to B-symptoms	
Table (23): The survival rate for each group according to the pathological subtypes	
Table (24): Overall survival rate of the two groups according to the size of the lesion	
Table (25): Failure free survival according to the chemotherapeutic regimen (16 patient	:s) -
Table (26): Failure free survival rate according to stage	
Table (27): Failure free survival rate according to B-symptoms	
Table (28): Failure free survival rate according to the pathological subtypes	
Table (29): Failure free survival rate according to size of the lesion	

LIST of FIGURES

Fig (1): Total nodal irradiation of the mantle, spade and inverted Y fields
Fig (2): The correlation between age and the incidence of HD.
Fig (3): OS rate of 16 patients treated with combined modality therapy
Fig (4): Overall survival rate of patients treated with Stanford-V regimen
according to stage
Fig (5): OS rate of patients treated with Stanford-V regimen according to B-symptoms
Fig (6): OS rate of patients treated with Stanford-V regimen according to
Fig (6): OS rate of patients treated with Stamord-V regimen according to
pathological subtypesFig (7): OS rate of patients treated with Stanford-V regimen according to the size
of the lesion
of the lesionFig (8): FFS rate of 16 patients treated with combined modality therapy
Fig (8): FFS rate of notionts treated with Stonford V regimen according to stage -
Fig (9): FFS rate of patients treated with Stanford-V regimen according to stage -
Fig (10): FFS rate of patients treated with Stanford-V regimen according to B-
symptoms
Fig (11): FFS rate of patients treated with Stanford-V regimen according to the
pathological subtypes
Fig (12): FFS rate of patients treated with Stanford-V regimen according to size
of the lesion
Fig (13): Case no. (1), Chest x-ray at first presentation
Fig (14): Case no. (1), Chest x-ray 2.5 years after the end of treatment
Fig (15): Case no. (2), Chest x-ray at first presentation
Fig (16): Case no. (2), Chest x-ray one year after the end of treatment
Fig (17): Case no. (2), Chest CT scan at first presentation
Fig (18): Case no. (2), Chest CT scan at the end of chemotherapy
Fig (19): Case no. (2), Chest CT scan after radiation therapy
Fig (20): Case no. (2), Chest CT scan 9 months after the end of treatment
Fig (21): Case no. (3), Pelvic CT scan at first presentation
Fig (22): Case no. (3), Pelvic CT scan at the end of chemotherapy
Fig (23): Case no. (3), Pelvic CT scan at the end of radiation therapy
Fig (24): Case no. (4), Neck CT scan at first presentation
Fig (25): Case no. (4), Neck CT scan after chemotherapy
Fig (26): Case no. (4), Neck CT scan 4 months after the end of radiation therapy
Fig (27): Case no. (5), Chest CT scan at first presentation
Fig (28): Case no. (5), Chest CT scan at the end of chemotherapy
Fig (29): Case no. (5), Chest CT scan at the end of radiation therapy

ABBREVIATIONS

ABMT	Autologous bone marrow transplantation	LDH	Lactate dehydrogenase enzyme
AML	Acute myeloid leukemia	L/H cell	Lymphocytic / histiocytic cell
β_2 m	Beta 2 macroglobulin	LP	Lymphocyte predominance
BMT	Bone marrow transplantation	MC	Mixed cellularity
CD	Cluster of differentiation	MRI	Magnetic resonance imaging
сGy	Centigray	MR	Minimal response
CMT	Combined modality treatment	MV	Mega volt
CNS	Central nervous system	NHL	Non Hodgkin lymphoma
CR	Complete response	NK.	Natural killer cells
CS	Clinical staging	NLPHD	Nodular Lymphocyte
CT	Chemotherapy		predominant Hodgkin's disease
CT scan	Computed tomography scan	NS	Nodular sclerosis
CXR	Chest x-ray	OS	Overall survival
ESR	Erythrocyte sedimentation rate	PET	Positrone emission tomography
EM	Extended mantle	PO	Orally
FDG	Fluorine-18-fluorodeoxyglucose	PR	Partial response
FFS	Failure free survival	PS	Pathologic staging
Ga-67	Gallium-67	RIT	Radiolabeled immunoglobulin
GI	Gastrointestinal		therapy
Gy	Gray	RS cells	Reed Sternberg cells
HD	Hodgkin's disease	RT	Radiation therapy
HDC	High dose chemotherapy	SSD	Source surface distance
HIV	Human immunodeficiency virus	SSN	Suprasternal notch
H-RS	Hodgkin's/Reed Sternberg	STNI	Subtotal nodal irradiation
IL	Interlukin	Tc-99	Technetium-99
INF	Interferon	TGF-β	Transforming growth factor beta
IV	Intravenous	TNI	Total nodal irradiation
LAG	Bipedal lymphangiography	TNF-α	Tumor necrosis factor alpha
LD	Lymphocyte depletion	WBCs	White blood cells
	•	Y-90	Yttrium-90

INTRODUCTION AND AIM OF THE WORK

Hodgkin's disease (HD) accounts for about 1% of new cancer cases annually in USA. In Egypt, the relative frequency of HD is 3.4% of all cancer patients with an annual incidence of 75 cases per year of mixed cellularity subtype commonly (Sherif & Ibrahim, 1987). At the year 2001, according to hospital based registry in the Egyptian National Cancer Institute, the relative frequency of HD was 2.1%. The etiology of HD has not been determined and the epidemiological studies suggest that it is a heterogeneous condition comprising more than one disease entity (Oudejans et al, 1997; Armstrong et al, 1998 and Dolcetti & Boiocchi, 1998).

The goal of most of the studies has become to avoid unnecessary invasive techniques. With better knowledge of the late effects and causes of death, there is now a consensus that management should be modulated according to the individual characteristics of the patient. The aim of further studies will be to progress in the identification of the various subsets of Hodgkin's disease (HD) and to introduce new therapeutic modalities as effective but less toxic than the present ones. This approach requires for each subset of patients a rigorous assessment of the long-term cost and benefit of the various therapeutic modalities used for treatment of HD (Tubiana, 1996).

Most patients who present with HD today can be cured of their disease. Current treatments strive to maintain a high level of efficacy while reducing the chance of long-term side effects that limit the quality and length of survival (Yuen & Horning, 1996).

The aim of our study is to evaluate the therapeutic effect of brief chemotherapy, Stanford-V, and adjuvant radiotherapy for bulky or advanced stage Hodgkin's disease.