

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

A GILBERT CELL BASED GAIN AND PHASE MISMATCH CALIBRATION LOOP FOR 5G BEAMFORMERS

Ву

Mohamed Kamel Mohamed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

A GILBERT CELL BASED GAIN AND PHASE MISMATCH CALIBRATION LOOP FOR 5G BEAMFORMERS

By

Mohamed Kamel Mohamed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Islam A. Eshrah

Dr. Mohamed A. Y. Abdalla

Professor

Assistant Professor

Electronics and Communications Engineering Faculty of Engineering , Cairo University Electronics and Communications Engineering Faculty of Engineering, Cairo University

A GILBERT CELL BASED GAIN AND PHASE MISMATCH CALIBRATION LOOP FOR 5G BEAMFORMERS

Ву

Mohamed Kamel Mohamed Hussein

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:

Prof. Islam A. Eshrah, Thesis Main Advisor

Prof. Ahmed Nader Mohieldin, Internal Examiner

Dr. Mohamed A. M. El-Nozahi, External Examiner Associate professor at ECE Dept. Faculty of Engineering, Ain Shams university

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY GIZA,EGYPT 2020

Engineer's Name: Mohamed Kamel Mohamed Hussein

Date of Birth: 06/04/1993 Nationality: Egyptian

E-mail: Engineer's E-mail **Phone:** +201092856919

Address: Misr El-Gdeeda, Cairo, Egypt.

Registration Date: 01/10/2016Awarding Date: -/-/2020

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Islam A. Eshrah

Dr. Mohamed A. Y. Abdalla

Examiners:

Prof. Islam A. Eshrah (Thesis Main Advisor)
Prof. Ahmed Nader Mohieldin (Internal Examiner)
Dr. Mohamed A. M. El-Nozahi (External Examiner)

Associate professor at ECE Dept.

Faculty of Engineering, Ain Shams university

Title of Thesis:

A Gilbert Cell Based Gain and Phase Mismatch Calibration Loop for 5G Beamformers

Key Words:

5G mobile networks; mm-Wave beamformers; calibration; Gilbert cell

Summary:

This thesis explores some calibration methods for gain and phase mismatch between beamformer channels responsible for either RF signals transmission or reception through a mmw 5G antenna array. These methods eliminates those mismatches leading to improve the accuracy of the direction of the beam and the exact distance between the transmitter and the receiver. The thesis represents an innovative low power calibration loop that is implemented in TSMC 65nm BiCMOS technology. The design procedure and the layout implementation for all of the building blocks are studied in detail and the simulation results for each block and for the top level will be presented to show the impact of the loop on the overall system performance

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mohamed Kamel Mohamed Hussein	Date:
Signature:	

Dedication

To Mom, Zeinab Omar

To Dad, Kamel Mohamed Hussein

To my sister, Noha

To my nieces, Jana and Jomana

To All of my great teachers and Professors

To my friend and Colleagues

And to all of my colleagues at Analog Devices, Egypt design center.

THANK YOU...

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to Allah the Lord of the Heavens and Earth and peace be upon Mohamed and his companions. I wish to express my gratitude to my principal advisers, Dr. Mohamed Youssef who was helpful and offered invaluable assistance, support and guidance. I am also genuinely blessed to have Dr. Islam Eshrah as a member of the supervisory committee, for his great efforts and constant care.

Many thanks to my friends and collegues for their support and help through the duration of this work.

Special thanks to my family at Analog Devices, Egypt design center.

My deepest gratitude to my family. Without their encouragement, I would not have gone this far.

Mohamed.

Table of Contents

D:	isclai	mer	1
D	edica	ation	ii
\mathbf{A}	ckno	wledgements	iii
Ta	able	of Contents	iv
Li	st of	Tables	vii
Li	st of	Figures	viii
Li	st of	Symbols and Abbreviations	xii
Li	st of	Publications	xiii
\mathbf{A}	bstra	act	xiv
1	INT	TRODUCTION	1
	1.1	Cellular Networks Evolution	1
		1.1.1 Evolution to Fourth Generation of Mobile Networks	1
		1.1.2 Moving Towards 5G	1
	1.2	Deployment Scenarios for 5G	3
	1.3	Phased Arrays	4
		1.3.1 The Concept of Phased Arrays	4
		1.3.2 Conventional Beamformer Block Diagram	6
		1.3.2.1 Analog Beamformer	6
		1.3.2.2 Digital Beamformer	8
	1.4	Array Size	10
	1.5	Thesis Organization	11
2	СО	MPLEXITY OF LARGE PHASED ARRAYS CALIBRATION:	
	LIT	TERATURE REVIEW	12
	2.1	Factors Affecting Large Antenna Arrays Radiation Pattern	13

	2.2	.2 Beamformers Mismatch Calibration: Literature Review		
		2.2.1	A 39GHz 4-Element Phased-Array CMOS Transceiver with	
			Built-in Calibration	20
		2.2.2	A Fully Integrated Scalable W-Band Phased-Array Module	
			with Integrated Antennas, Self-Alignment and Self-Test $$	22
	2.3	Varial	ble Gain Amplifiers	23
	2.4	Vector	r Modulators	25
	2.5	Concl	usion	29
3	PR	OPOS:	ED CALIBRATION ALGORITHM	30
	3.1	Mathe	ematical basis for the Algorithm	31
	3.2	Propo	osed Calibration Algorithm	32
	3.3	The C	Calibration Algorithm	34
		3.3.1	Gain Mismatch calibration	34
		3.3.2	Phase Mismatch calibration	35
4	CA	LIBR	ATION CIRCUITS DESIGN	38
	4.1	Switch	hable Power Coupler	39
		4.1.1	Switchable Power Coupler Performance Metrics	40
		4.1.2	Tapping Techniques	41
		4.1.3	Switchable Power Coupler Design Procedure	43
		4.1.4	Switchable Power Coupler Simulation Results	49
4.2 Gilbert Multiplier		rt Multiplier	50	
		4.2.1	Mathematical Model for the Gilbert Multiplier	51
			4.2.1.1 Large Signal Operation of the Gilbert Multiplier .	52
			4.2.1.2 Small Signal Operation of the Gilbert Multiplier .	53
		4.2.2	Gilbert Multiplier Performance Metrics	55
		4.2.3	Gilbert Multiplier: Derivation of Specifications	57
		4.2.4	Gilbert Multiplier: Design Procedure	58
		4.2.5	Gilbert Multiplier: Layout and Simulations	61
	4.3	Differ	ential to Single Ended Amplifier	64
		4.3.1	The Amplifier Module Design Choices	68
	44	Switel	hed Capacitors	71

	4.5	Strong Arm Comparator	77
5	$\mathbf{C}\mathbf{A}$	LIBRATION LOOP EVALUATION	81
	5.1	Calibration Loop Sensor Evaluation	81
	5.2	Calibration Loop Simulations	83
6	CO	NCLUSION AND FUTURE WORK	89
	6.1	Conclusion	89
	6.2	Future Work	90
References			91
Appendix A MATLAB CODES			93
Appendix B BEAMFORMER TX CHANNEL VERILOGA MODEL102			

List of Tables

1.1	Coupler Design Parameters w.r.t Performance Metrics	9
2.1	VMs literature review	29
4.1	Coupler Design Parameters w.r.t Performance Metrics	45
4.2	Coupler Design Parameters w.r.t Performance Metrics	48
4.3	Gilbert Multiplier Design Parameters and Performance Metrics	61
6.1	Performance Comparison with the literature	89

List of Figures

1.1	Mobile Networks Evolution	2
1.2	Forecast of Capacity vs Roll out of 5G	
1.3	5G Frequency Bands Allocation According to Urban Capacity	4
1.4	Resulting Signal of 2 Similarly Excited Antennas	5
1.5	Resulting Signal of 2 differently Excited Antennas	٦
1.6	Beamformer Channel Block Diagram	7
1.7	Analog Beamforming Block Diagram	8
1.8	Digital Beamforming Block Diagram	Ć
1.9	Beamformer Array Metrics	10
2.1	Receving ESLA	14
2.2	Normalised Array Factor of ESLA	15
2.3	Effect of array elements gain mismatch on AF	16
2.4	Array gain of 16 channel BF vs gain mismatch	16
2.5	SLL of 16 channel BF vs gain mismatch	17
2.6	Null location of 16 channel BF vs gain mismatch	17
2.7	Effect of array elements phase mismatch on AF	18
2.8	Array gain of 16 channel BF vs phase mismatch	18
2.9	SLL of 16 channel BF vs phase mismatch	18
2.10	Digital Beamformer RF front-end Calibration	20
2.11	Digital Beamformer RF front-end Calibration	2
2.12	Beamformer channel: RF Blocks Front-end Calibration	22
2.13	Current Steering VGA	23
2.14	Current Steering VGA: performance Metrics	24
2.15	Cascode Current Steering VGA	25
2.16	Signal Constellation for Different Modulation Schemes	26
2.17	Vector Modulator Block Diagram	26
2.18	Vector Modulator Ideal frequency response	27
2.19	Proposed Poly Phase Filter Topology	27
2.20	IQVM schematic	28