

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

APPROPRIATE DRAIN ENVELOPE FOR PROBLEMATIC CALCAREOUS SOILS IN EGYPT

By

Omar Badr Mohamed Badr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Irrigation and Hydraulics Engineering

APPROPRIATE DRAIN ENVELOPE FOR PROBLEMATIC CALCAREOUS SOILS IN EGYPT

By

Omar Badr Mohamed Badr

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

Irrigation and Hydraulics Engineering

Under the Supervision of

Prof. Dr. Abdanan S. Bazaraa	Dr. Gehan A.H. Sallam
Professor	Associate Professor
Department of Irrigation and Hydraulics	Drainage Research Institute (DRI)
Faculty of Engineering, Cairo University	National Water Research Center (NWRC)

APPROPRIATE DRAIN ENVELOPE FOR PROBLEMATIC CALCAREOUS SOILS IN EGYPT

By

Omar Badr Mohamed Badr

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

ir

Irrigation and Hydraulics Engineering

Approved by the Examining Committee	
Prof. Dr. Abdallah Sadik Bazaraa	(Thesis Main Advisor)
Prof. Dr. Kamal EL-Deen Milad Soliman	(Internal Examiner)
Prof. Dr. Osama Khairy Saleh (Faculty of Engineering, Zagazig University)	(External Examiner)

Engineer's Name: Omar Badr Mohamed Badr

Date of Birth: 16/1/1991 **Nationality:** Egyptian

E-mail: Omarwho45@gmail.com

Phone: 01142738778

Address: El-kanater .El-khairya , Quliubiya, Cairo

Registration Date: 1/3/2016 **Awarding Date:**/..... **Degree:** Master of Science

Department: Irrigation and Hydraulics Engineering

Supervisors:

Prof. Abdallah S. Bazaraa

Dr. Gehan A.H sallam (Associate Professor at DRI-NWRC)

Examiners:

Porf. Abdallah Sadik Bazaraa (Thesis main advisor)

Prof. Dr. Kamal EL-Deen Milad Soliman (Internal examiner)

Prof. Dr. Osama Khairy Saleh (External examiner), (Faculty of Engineering, Zagazig University)

Title of Thesis:

APPROPRIATE DRAIN ENVELOPE FOR PROBLEMATIC CALCAREOUS SOILS IN EGYPT

Key Words:

subsurface drainage; envelope materials; calcareous soils; permeameter test

Summary:

Agricultural subsurface drainage systems are commonly used to remove the excess water and salts from the root zone to enhance crop production and to ensure irrigated agriculture sustainability. In Egypt, drain pipes installed in soils with limited cohesion (clay content is less than 30%) should be provided with envelopes to prevent the entry of soil particles into the drains (filter function) and to reduce entrance resistance by creating a more permeable zone around drains (hydraulic function). Calcareous soils with calcium carbonate (CaCO3) content of more than 15% are considered hazardous problematic soils that cause envelope clogging and sedimentation in the subsurface drainage network. Earlier testing of synthetic drain envelopes in Egyptian calcareous soils has revealed poor performance. Therefore, the main objective of this study is to determine the most appropriate locally available envelope material(s) that can be used in calcareous soils under Egyptian conditions. Both theoretical and experimental (laboratory as well as field) investigations were conducted to assess the performance of the locally available synthetic envelope (polypropylene with pore size 400 microns – PP400) alone and combined with granular materials. The assessment results (theoretical and experimental) indicated that the currently used synthetic envelope PP400 is not performing well when used alone (too thin with low porosity). Treatments that have a gravel material, either alone or in combination with the locally available synthetic envelope revealed good performance and consequently gravel envelopes alone are recommended.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Omar Badr Mohamed Badr	Date:
Signature:	

Acknowledgments

I would like to thank my supervisors, Prof. Abdallah S. Bazaraa of Cairo University, and Dr. Gehan Sallam of the Drainage Research Institute, for their extensive care and interest in leading my work and guiding me dedicatedly to this point.

I would also want to thank the Drainage Research Institute (DRI) directors and staff, Specially Dr. Mohamed Bakr Abd El-Ghany, for his endless help and support, in gathering the required data and providing me with the required information.

Above all, thanks are extended to my family, especially my father, my mother, and my beloved wife for their continuous motivation and encouragement, that played the most supportive and helpful role during my research, allowing me always to work harder and be more efficient. I wouldn't have reached what I have reached without them.

Last but not least, I would like to thank all of my friends and colleagues inside and outside the DRI for their extensive support and encouragement.

Table of Contents

ACKNOWLEDGMENTS	I
TABLE OF CONTENTS	II
LIST OF TABLES	IV
LIST OF FIGURES	V
NOMENCLATURE	VII
ABSTRACT	
CHAPTER 1 : INTRODUCTION	
1.1.BACKGROUND	
1.2.PROBLEM STATEMENT	
1.3.OBJECTIVES AND APPROACH	
CHAPTER 2 : BACKGROUND AND LITERATURE REVIEW	5
2.1.Introduction	5
2.2.CLOGGING PROBLEM OF DRAIN PIPES AND ENVELOPES	5
2.3. CHARACTERISTICS OF CALCAREOUS SOILS	
2.4. PHYSICAL PROPERTIES OF CALCAREOUS SOILS	
2.4.1.The presence, size-range of calcium carbonate	
2.4.2.Soil hydraulic conductivity	
2.5. CLOGGING PROBLEMS IN CALCAREOUS, GYPSUM SOILS	
2.6.FLOW TOWARDS THE DRAIN	
2.7.1.Organic envelopes	
2.7.2.Granular mineral envelopes	
2.7.3.Synthetic envelopes	
2.8.APPLIED RESEARCH FOR PROBLEMATIC CALCAREOUS SOILS IN EGYP	
CHAPTER 3 : RESEARCH APPROACH	17
3.1.Introduction	
3.2.Theoritical evaluation	
3.2.1.Envelope need	
3.2.2.Synthetic envelope selection (the desired pore size)	
3.2.3.Determining the envelope thickness and type	
3.3.EXPERIMENTAL EVALUATION	
3.3.1.Laboratory tests	22
3.3.2.field assessments	
Hydraulic performance assessment	
Mechanical performance assessment	25
CHAPTER 4 : FIELD AND LABORATORY STUDIES	27
4.1.Introduction	27
4.2.Abo- Masoud pilot area characteristics	
4.2.1.Soil and hydrological properties	28

4.2.2.Irrigation and old drainage systems	31
4.2.3.The new drainage system	32
4.3. FIELD STUDIES FOR DRAIN LINES ASSESSMENT	37
4.3.1.Parameters measured, for hydraulic assessment	37
4.3.2.Excavation and inspection programs	41
4.4.LABORATORY TESTS PROCEDURE (PERMEAMETER)	41
4.4.1.Permeameter components	43
4.4.2.Preparing the Permeameter cylinders	44
4.4.3.Test-running and measurements	46
4.4.4.Measurements analysis and interpretation	49
CHAPTER 5: RESULTS AND ANALYSIS	51
5.1. Introduction	51
5.2. THEORETICAL EVALUATION	51
5.2.1. The need for a drain envelope for Abo-Masoud and Banger El-Sokar	•
soils	51
5.2.2.Synthetic envelope selection for Abo-Masoud and Banger El-Sokar	
soils	52
5.2.3.Determining the envelope thickness and type for Abo-Masoud soil-	
drainage conditions	
5.3.EXPERIMENTAL EVALUATION	
5.3.1.Laboratory tests of Abo-Masoud and Banger El-Sokar soils	
5.3.2. Hydraulic performance assessment	
5.3.3.Mechanical performance assessment	65
5.3.4.Cost analysis of envelopes used in calcareous soils under Egyptian	
conditions	66
CHAPTER 6: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	69
6.1.SUMMARY	69
6.2.Conclusions	70
6.3.RECOMMENDATIONS	71
REFERENCES	72
APPENDIX (A)	76
APPENDIX (B)	
APPENDIX (C)	

List of Tables

Table 3.1 The influence of soil uniformity coefficient (Cu) and the plasticity	
index (PI) on soil siltation tendency (Dieleman and Trafford, 1976).	18
Table 3.2 Ranges of selected d90 values for need and selection of synthetic drain	
envelopes in the Egyptian soils (Vlotman and Omara, 1996.)	19
Table 3.3 The Physical properties of the current used synthetic envelope in Egypt	,
zwo cie ine injetem propenies er me emiene useu symmene en enope in zgyp	20
Table 3.4 The Recommended Criteria to obtain drain performance (FAO, 1976)	
r	
Table 4.1 The physical soil properties of Abo- Masoud pilot area	29
Table 4.2 Abo-Masoud, lateral drains specification, envelope type, slope, and	
drains depths	35
Table 4.3 Granular envelope gradation ranges according to base soil gradation	
(Winger and Ryan, 1970)	35
Table 4.4 Grain size distribution of the applied gravel envelope	
Table 4.5: The positioning of installed observation wells w.r.t the drain laterals	
Table 4.6 The physical soil properties of Banger El-sokar region	
Table 5.1 The used criteria for determining the need for drain envelope in Abo-	
Masoud and Banger El-Sokar soils	51
Table 5.2 Average assessment parameters of lateral drains, Second hydraulic	
assessment, Abo-Masoud, 2019	61
Table 5.3 The average percent of CaCo3 content per each lateral served area	
Table 5.4 The results of both first and second drain lines assessment, and the	
relative change in performance (Abo-Masoud)	64
Table 5.5 The results of 2014, and 2019 excavations programmes w.r.t the	
sedimentation height and the roots intrusion/root clogging in each drainpipe	
(Abo-Masoud)	66
Table 5.6 Analysis for constructing cost items of subsurface drainage laterals	
under Egyptian condition	68

List of Figures

Figure 1.1 Development of subsurface drainage in the Nile Delta	2
Figure 1.2 Regions of calcareous soils within Egypt	
Figure 2.1 Soil conditions at the drain vicinity (F A O, 2005)	6
Figure 2.2 Flow towards the drain with corresponding flow resistances and head	0
losses (Stuyt et al. 2005)	9
Figure 2.3 Practical evaluation of approach flow and total head loss in	•••••
experimental fields	11
Figure 2.4 From right to left drain wrapped by a voluminous coconut fiber	
envelope, a combination of gravel and Synthetic envelope (Egyptian field, 2019),	
Pre-wrapped drain pipes.	13
Figure 2.5 Location of pilot areas constructed within (PADT) program	
Figure 2.6 Location of experimental calcareous soil areas proposed by EPADP in	
2012 (Sallam, 2018)	16
Figure 2.1 Legation of the considered study gross of colorrous soils	10
Figure 3.1 Location of the considered study areas of calcareous soils	10
drain envelopes for Egyptian soils (Vlotman and Omara, 1996.)	10
Figure 3.3 Flow chart for the selection of the envelope thickness in conjunction	19
with the envelope type (Vlotman et al. 2000).	21
Figure 3.4 Schematic diagram for the Permeameter set-up in (DRI)	
Figure 3.5 Cross-section of drainpipe with a layer of sediment of height (h)	
Figure 3.6 Longitudinal section of sediments in corrugated drainpipe, with no	23
effect on drain capacity	25
Figure 3.7 Pipe discharge capacity as a function of the height of the sediment	0
layer	26
•	
Figure 4.1 The location of Abo-Masoud village and the pilot area	27
Figure 4.2 Aerial photo showing the geometry of Abo-Masoud pilot area	28
Figure 4.3 Sampling locations in Abo-Masoud pilot area	28
Figure 4.4 USDA soil textural classification triangle (After Kohnke, 1968)	29
Figure 4.5 Soil particle size distribution of Abo- Masoud pilot area	30
Figure 4.6 Measurement locations of the water table depth and the soil hydraulic	
conductivity	
Figure 4.7 Irrigation and old drainage system of Abo-Masoud pilot area	32
Figure 4.8 Schematic of the singular subsurface pipe drainage system	
Figure 4.9 Layout of new subsurface drainage system	
Figure 4.10 Schematic of the new drainage system layout	34
Figure 4.11 Representative curve of the applied gravel drain envelope material	
(Sallam, 2018)	36
Figure 4.12 Observation wells location, distributed over the lateral drains length	•
	38
Figure 4.13 Wrapping and installing the observation wells network in Abo-	40
Masoud	
Figure 4.14 Measuring watertable depth, and entrance head loss (he)	40

Figure 4.15 Excavation, sampling, replacing processes, and the two-side coupler	
pipe. (June 2019)	42
Figure 4.16 Sampling locations in village 14 and village 25, located in Banger El-	
sokar region	42
Figure 4.17 Components of the Permeameter cylinder	43
Figure 4.18 Filling and compacting processes, using the stamp weight	46
Figure 4.19 Schematic of the Permeameter water supply system(Loop system)	47
Figure 4.20 Front view of the Permeameter apparatus	48
Figure 4.21 Electronic balance to measure the cylinder outflow (DRI, November	
2019)	50
Figure 5.1 Particle size distribution of Abo-Masoud and Banger El-Sokar soils,	
collected from (100-200cm) depth.	52
Figure 5.2 Particle size distribution of Abo-Masoud and Banger El-Sokar soils,	
plotted within Vlotman and Omara's boundaries	53
Figure 5.3 A schematic of an enveloped drainpipe under Egyptian condition	53
Figure 5.4 Time change of hydraulic gradients ratios (A), and hydraulic	
conductivities ratios (B) for Abo-Masoud	55
Figure 5.5 Time change of hydraulic gradients ratios (A), and hydraulic	
conductivities ratios (B) for Banger El-Sokar	56
Figure 5.6 Comparison between the average gradient ratios of Abo-Masoud and	
Banger El-Sokar tests (Three cylinders average)	57
Figure 5.7 Time change of average soil hydraulic gradient (A), and envelope	
hydraulic gradient (B) for Abo-Masoud and Banger El-Sokar (Three cylinders	
average)	58
Figure 5.8 Entrance resistantce of drains over the monitoring period, for lateral 1,	
2, and 3 (A); and for laterals 4, 5, and 6 (B)	60
Figure 5.9 Average entrance resistantce of lateral drains, based on the Second	
monitoring period, Abo-Masoud, 2019	61
Figure 5.10 Distribution of calcium carbonate content (percentage) over Abo-	
Masoud pilot area	62
Figure 5.11 Comparison of entrance resistance for the first and the second	
assessments (Abo-Masoud)	64

Nomenclature

ae The ratio of the perforated pipe surface area exposed to water flow

cm Centimeter

Cu Coefficient of uniformity, which is the ratio between d_{60} and d_{10}

d₁₀ Particle size of the base soil at which 10% of the material has a smaller

size (microns)

 d_{60} Particle size of the base soil at which 60% of the material has a smaller

size (microns)

d₉₀ Particle size of the base soil at which 90% of the material has a smaller

size (microns)

DRI Drainage Research Institute

DRP Drainage Research Programme Project

EPADP Egyptian Public Authority for Drainage Projects

FAO Food and Agriculture Organization of the United Nations

Fed Feddan = 4200 m^2

he Entrance head loss (m)

HFG Hydraulic failure gradient (dimensionless)

I_{ex} Hydraulic exit gradient (dimensionless)

K Soil saturated hydraulic conductivity (m/d)

m/d Meter per day

NWRC National Water Research Center

O₉₀ pore size at which 90% of the envelope pores have an equal size or

smaller (microns)

PADTP The Drainage Technology and Pilot Areas Project

PI The plasticity index of the soil and is equal to the difference between the

liquid limit and the plastic limit of the soil.

PSD The soil particle size distribution

PVC Polyvinyl chloride

Q The drain discharge (m³/day)

re Entrance resistant (day/m)

ε Porosity of synthetic (voluminous) envelope (dimensionless)