

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Genetic Polymorphism of Selected Genes as Susceptible Risk Factors in the Progression of Hepatitis C Viral Infection to Hepatocellular Carcinoma

Submitted By Hany Mohammed Mohammed Abdel Allah

M.Sc. (2014) in Biochemistry Medical Research Institute, Alexandria University

For the Fulfillment of the PhD Degree in Biochemistry

Under supervision of

Prof. Dr. Walid E. Zahran

Professor of Biochemistry Faculty of Science Ain Shams University

Prof. Dr. Samir A.M. El-Masry

Professor of Biochemistry and Molecular Biology Genetic Engineering and Biotechnology Institute University of Sadat City

Prof. Dr. Mahmoud M. El-Bendary

Professor of Tropical Medicine and Hepatology Faculty of Medicine Mansoura University

Dr. Ahmed F. Soliman

Associate Professor of Biochemistry Faculty of Science Ain Shams University

Biochemistry Department Faculty of Science Ain Shams University 2021

Ain Shams University Faculty of Science

Name : Hany Mohammed Mohammed

Scientific Degree : Ph.D. in Biochemistry

Department : Biochemistry

Faculty : Science University : Ain Shams

Graduation Year : 2005 Master's degree Year : 2014 Grant Year : 2021 I declare that this thesis has been composed by myself and the work herein has not been submitted for a degree at this or any other university.

Hany Mohammed Mohammed

Acknowledgment

First of all, I offer thanks always to ALLAH, for his great care and guidance in every step of my life and for giving me the ability to complete this work and who made all things possible.

It was a great pleasure for me to express my deep gratitude and appreciation to **Prof. Dr. Walid E. Zahran,** Professor of Biochemistry, Faculty of Science, Ain Shams University, for his continuous guidance, advice and supervision and sacrificing a lot of his precious time to revise each and every step of this study. It is hard for me to find the appropriate words that would do his favors.

I am deeply indebted to **Prof Dr. Samir A.M. El-Masry**, Professor of Biochemistry and Molecular Biology, Genetic Engineering and Biotechnology Institute, University of Sadat City, for his kind supervision, Continuous support, help, encouragement, valuable guidance, care, and advice. I am very lucky to have this great opportunity to be one of his students.

My sincere thanks and great gratitude to **Prof. Dr. Mahmoud M. El-Bendary**, Professor of Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, for his sincere guidance, generous help, encouragement and patience.

I would like to express my deep gratitude to **Dr. Ahmed F. Soliman,** associate Professor of Biochemistry, Faculty of Science, Ain Shams University, for his keen supervision and continuous assistance and constant support and encouragement are much appreciated. I am grateful in every possible way for his wise opinions and critical comments throughout the whole study and work.

I wish also to express my thanks to all my family for their endless support and unyielding faith in me and for their tolerance of my absence, physically and emotionally stress many, many thanks. The completion of this thesis would have never been conceivable without their fervent motivation.

Hany M. Mohammed

Abstract

Background: Owing to the high infection prevalence of hepatitis C virus (HCV), hepatocellular carcinoma (HCC) is considered a major health problem in Egypt. Identification of host genetic factors influencing the risk of developing HCC in patients with HCV infection may help to refine patients' selection to benefit from specific preventative measures and/or adapted screening policies. Thus, the current study aimed to investigate the association of *MTHFR* C677T and A1298C in addition to *TS* 3'-UTR 1494del/ins 6bp polymorphisms with the susceptibility to HCV-related HCC in an Egyptian population.

Method: Genotyping of the polymorphisms under study was performed using polymerase chain reaction-restriction fragment length polymorphism in 90 HCV-related HCC patients, 104 HCV-cirrhotic patients, and 100 healthy controls.

Results: In healthy controls, the *MTHFR* C677T polymorphism under the homozygous codominant, recessive, and allelic models, the *MTHFR* A1298C polymorphism under all the genetic models, and *TS* polymorphism under the allelic model only were associated with an increased risk of HCC. In HCV patients, the *MTHFR* C677T polymorphism under all the genetic models, as well as both *MTHFR* A1298C and *TS* polymorphisms under the homozygous codominant model only, increased the susceptibility to HCC. The C/C and T/C haplotype combinations of *MTHFR* C677T and *MTHFR* A1298C polymorphisms conferred increased the risk for healthy subjects to develop HCC whereas, the T/C haplotype only contributed to increased susceptibility to HCC in HCV patients.

Conclusion: *MTHFR* C677T and A1298C in addition to *TS* 3′-UTR 1494del/ins 6bp polymorphisms may contribute to the development of HCV-related HCC in an Egyptian population. These findings may aid in the early diagnosis and management of HCC.

Contents

List of tables	I
List of figures	III
List of abbreviations	IV
Introduction	VI
Aim of the work	X
I. Review of Literature	
1. Hepatocellular carcinoma	1
1.1. Incidence	2
1.2. Risk factors	5
1.2.1. Hepatitis	5
Hepatitis C virus infection	6
I. HCV structure and pathogenicity	8
II. HCV and hepatocarcinogenesis	11
► Hepatitis C virus infection	15
I. HBV structure and pathogenicity	16
II. HCV mechanisms of hepatocarcinogenesis	
<u>1.2.2. Aflatoxin</u>	21
<u>1.2.3. Tobacco</u>	22
1.2.4. Host-related risk factors	23
➤ Obesity	23
➤ Nonalcoholic fatty liver disease	23
2. Methylenetetrahydrofolate reductase	24
2.1. <i>MTHFR</i> mutations and polymorphisms	28
• <i>MTHFR</i> C677T	29
• <i>MTHFR</i> A1298C	29
2.2. Health risks associated with <i>MTHFR</i> polymorphisms	30
3. Thymidylate synthase	32
3.1. TS mutations and polymorphisms	
II. Subjects and Methods	
1. Subjects	37
1.1. Specimen collection	
2. Methods	
2.1. Biochemical analyses	
2.1.1. Measurement of serum alanine transaminase activity	
2.1.2. Measurement of serum aspartate transaminase activity	

2.1.3. Measurement of serum albumin level	42
2.1.4. Measurement of serum total bilirubin level	44
2.1.5. Determination of serum alpha-fetoprotein level	45
2.2. Molecular analyses	48
2.2.1. Extraction of genomic DNA	48
2.2.2. Polymerase chain reaction	
2.2.3. Agarose gel electrophoresis	58
2.2.4. Restriction fragment length polymorphism	60
2.3. Statistical analysis	62
III. Results	64
IV. Discussion	86
V. Summary	94
References	100
Arabic Summary	
Arabic Abstract	

List of Tables

Table No.	Subject	Page
1	Primers' sequences of MTHFR and TS	56
2	Amplification profile	58
3	Basic characteristics of the study population	65
4	Genotype distribution and allele frequency of MTHFR C677T among different groups	67
5	Genotype distribution and allele frequency of <i>MTHFR</i> A1298C among different groups	68
6	Genotype distribution and allele frequency of <i>TS</i> 3'-UTR 1494del/ins 6 bp among different groups	70
7	Biochemical parameters among different polymorphic genotypes of <i>MTHFR</i> C677T gene polymorphism in control subjects	71
8	Biochemical parameters among different polymorphic genotypes of <i>MTHFR</i> C677T gene polymorphism in LC patients	71
9	Clinical and biochemical characteristics among different polymorphic genotypes of <i>MTHFR</i> C677T gene polymorphism in HCC patients	72
10	Biochemical parameters among different polymorphic genotypes of <i>MTHFR</i> A1298C gene polymorphism in control subjects	73
11	Biochemical parameters among different polymorphic genotypes of MTHFR A1298C gene polymorphism in LC patients	74
12	Clinical and biochemical characteristics among different polymorphic genotypes of <i>MTHFR</i> A1298C gene polymorphism in HCC patients	74
13	Biochemical parameters among different polymorphic genotypes of <i>TS</i> 3'-UTR 1494del/ins 6bp gene polymorphism in control subjects	76
14	Biochemical parameters among different	76

	polymorphic genotypes of TS 3'-UTR 1494del/ins	
	6bp gene polymorphism in LC patients	
15	Biochemical parameters among different polymorphic genotypes of <i>TS</i> 3'-UTR 1494del/ins 6bp gene polymorphism in HCC patients	77
16	MTHFR C677T polymorphism and HCC risk against control group according to the genetic association models	78
17	MTHFR C677T polymorphism and HCC risk against LC patients according to the genetic association models	79
18	MTHFR A1298C polymorphism and HCC risk against control group according to the genetic association models	80
19	MTHFR A1298C polymorphism and HCC risk against LC patients according to the genetic association models	81
20	TS 3'-UTR 1494del/ins 6bp polymorphism and HCC risk against control group according to the genetic association models	82
21	TS 3'-UTR 1494del/ins 6bp polymorphism and HCC risk against LC patients according to the genetic association models	82
22	Frequencies of <i>MTHFR</i> C677T and <i>MTHFR</i> A1298C haplotypes in the control and HCC groups as well as their association with HCC risk	84
23	Frequencies of <i>MTHFR</i> C677T and <i>MTHFR</i> A1298C haplotypes in LC and HCC groups as well as their association with HCC risk	85

List of Figures

Fig.	Title	Page
1	Progressive stages of liver disease to hepatocellular carcinoma (HCC) development	2
2	Global variations in age-adjusted incidence rates of liver cancer, and the prevalence of chronic HCV and HBV infections	
3	HCV: model structure and genome organization	10
4	Estimation of worldwide prevalence of chronic hepatitis B virus	16
5	Hepatitis B virus (HBV) genome map	18
6	MTHFR metabolic pathway	27
7	Organization of human methylenetetrahydrofolate reductase (MTHFR) gene	28
8	Localizations of some of the SNPs studied in the <i>MTHFR</i> gene	28
9	Mechanism of thymidylate synthase inhibition by 5-fluorouracil	34
10	Regulation of TS gene expression	36
11	Calibration curve for serum AFP	48
12	Polymerase chain reaction	55
13	Detection of the studied variants' genotypes using agarose gel electrophoresis after performing polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP)	66
14	Plot and pairwise estimates of linkage disequilibrium in the study population	83