

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Effect of addition of silver nanoparticles on antibacterial effect, sealing ability and solubility of different root canal sealers.

(An in vitro study)

Thesis

Submitted to

Faculty of Oral and Dental Medicine Ain Shams University in Partial

Fulfillment of Requirements for master's degree

in Endodontics

By

Mohamed Gamal Abdel-Hamid Farahat

B.D.S (Faculty of Dentistry, Misr International University, 2013)

Faculty of Dentistry
Ain Shams University

Supervisors

Assoc. Prof. Medhat Taha El-Faramawy

Associate Professor of Endodontics

Faculty of Dentistry, Ain Shams University

Dr. Tariq Yehia Abdelrahman

Lecturer of Endodontics

Faculty of Dentistry, Ain Shams University

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Kindest, and Most Merciful. I express my deepest gratitude to Ass. Prof. Medhat El Faramawy Associate Professor of Endodontics, Faculty of Dentistry, Ain Shams University for his constant guidance, support, motivation, and untiring help during this work, his depth of knowledge has been extremely beneficial for me.

I express my profound sense of respect to my supervisor Dr. Tariq Yehia Lecturer of Endodontics, Faculty of Dentistry, Ain Shams University, for the time, support, motivation, and guidance, he devoted to me. His high moral ethics was a model for me.

I would like to thank all Ain Shams endodontic department and staff members for offering me much support throughout the whole work.

Dedication

This work is dedicated to...

My family who has been a constant source of emotional and moral support in every aspect of my life, this thesis would certainly not have existed without them.

Mohamed Gamal Farahat

Contents

Title	Page
List of Tables	
List of Figures	
List of Abbreviations	
List of Abbreviations	IV
1. Introduction	1
2. Review of Literature	3
3. Aim of The Study	28
4. Materials & Methods	29
5. Results	43
6. Discussion	56
7. Summary & Conclusion	63
8. References	66
9. Arabic Summary	

List of Tables

Table	Table Content	Page
Table 1	Table showing the solubility values between the six	45
	groups at 1 day, 1 week, 2 weeks and 4 weeks	
Table 2	Table showing the solubility values between each group at 1 day, 1	47
	week, 2 weeks and 4 weeks	
Table 3	Table showing the sealing ability values between the six groups at 1	49
	day, 1 week and one month	
Table 4	Table showing the sealing ability values between each group at 1	51
	day, 1 week and 1 month.	
Table 5	Table showing the antibacterial values between the six groups at 1 minute and 1 hour.	53
	minute and 1 nour.	
Table 6	Table showing the antibacterial values between each group at 1 minute and 1 hour.	55

List of Figures

Figure	Figure Content	Page
Figure 1	Sample classification of sealing ability test	32
Figure 2	A diagram showing the fluid filtration device	
Figure 3	Sample classification of solubility test.	34
Figure 4	Sample classification of antibacterial test.	36
Figure 5	The 3-digit scale	38
Figure 6	A photograph showing E. Faecalis on plate	38
Figure 7	A photograph showing crushed sealers.	39
Figure 8	A photograph showing centrifuging crushed sealer with BHI broth.	39
Figure 9	A photograph showing culturing of sealer on plate containing E.faecalis	40
Figure 10	A photograph showing colonies of bacteria with MTA Fillapex after one minute with 1/1000 dilution.	40
Figure 11	A photograph showing colonies of bacteria with MTA Fillapex after one hour with 1/1000 dilution.	41
Figure 12	A photograph showing colonies of bacteria with MTA Fillapex + SNP after one minute with 1/1000 dilution.	41
Figure 13	A photograph showing colonies of bacteria with MTA Fillapex + SNP after one hour with 1/1000 dilution.	42
Figure 14	Bar chart showing the solubility values between the six groups at 1 day, 1 week. 2 weeks and 4 weeks	46
Figure 15	Bar chart showing the solubility values between each group at 1 day, 1 week, 2 weeks and 4 weeks	48
Figure 16	Bar chart shows the sealing ability value between the six groups at 1 day, 1 week and 1 month.	50
Figure 17	Bar chart showing the sealing ability values between each group at 1 day, 1 week and 1 month.	52
Figure 18	Bar chart showing the antibacterial values between the six groups at 1 minute and 1 hour.	54
Figure 19	Bar chart showing the antibacterial values between each group at 1 minute and 1 hour.	55

List of Abbreviations

ADA	American Dental Association
AD-SNP	ADSeal + SNP
ADT	Agar Diffusion test
AgVO3	Silver Vandate
АН	AH plus
ANSI	American National Standards Institute
AP	Apexit plus
BCS	Bio ceramic Sealer
ВНІ	Brain Heart Infusion
CFU	Colony forming units
СНХ	Chlorohexidine
CsNPs	Chitosan Nanoparticles
DCT	Direct contact test
DMAHDM	Dimethylaminohexadecyl methacrylate
DNA	Deoxyribonucleic acid
EDTA	Ethelenediaminetetraacetic acid
ELISA	Enzyme linked Immunosorbent assay
EN	Endomethasone
ES	Experimental sealer
FL	MTA Fillapex
GF	GuttaFlow
GF-SNP	GuttaFlow2 + SNP
НВ	Hybrid root sealer
HGF	Human Gingival Fibroblast
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
ISO	International Standardization Organization
MF-SNP	MTA Fillapex + SNP
MTA	Mineral trioxide aggregate
NAg	Silver Nanoparticles
-	III

NaOCI	Sodium Hypochlorite
Ni Ti	Nickel Titanium
PBS	Phosphate buffer saline
PC	Portland Cement
PSI	Pound per square inch
QPEI	Quaternary Ammonium Polyethyleneimine
RCS	Real Seal
RSA	Reokoseal Automix
SEM	Scanning electron microscope
SNP	Silver Nanoparticles
SP	Sealapex
TS	Tubliseal

Introduction

1. Introduction

The goal of successful endodontic treatment is to obtain a hermetic seal of the root canal system. The process of endodontic treatment includes mechanical shaping of the canals using endodontic files either manual files or rotary files, cleaning of the root canal system through irrigants and finally obturation of the canal. An inadequate filling during obturation may result in reentry of bacteria and irritation of periapical tissues.

Obturation of the canal is done through using of gutta percha alongside with different root canal sealers. Root canal sealers should meet high biological, physicochemical and mechanical properties to ensure obtaining successful sealing of the root canal system.

Epoxy resin-based sealers are known with their excellent physicochemical properties and sealing ability making them widely used in the field of endodontics.

Although MTA is good as a root filling material, but its physical properties make it hard to be used as root canal sealer. These limitations led to development of MTA-based root canal sealers. Literature show few investigations about the antibacterial effect of those sealers. (1) Trial to add silver nanoparticles to MTA based sealers is very important in order to obtain the excellent mechanical properties and biocompatibility of MTA alongside with gaining antibacterial effect of silver nanoparticles in one material.

Nanomaterials offer unique physicochemical properties such as large surface area/mass ratio, ultrasmall sizes and increased chemical reactivity in comparison with their bulk counterparts. Silver nanoparticles exert their antibacterial effect through acting on multiple targets as altering the hydrogen bonding/respiratory chain, unwind DNA, interaction with the sulfhydryl groups of proteins and DNA and interference with cell wall synthesis and cell division. They also destabilize the bacterial membrane and increase its permeability leading to leakage of cell components.⁽²⁾

Many attempts were done to increase the antibacterial effect of the root canal sealers. Additives to sealers may be beneficial to obtain this goal. Recently, silver nanoparticles are widely used in dental field due to its recorded high antibacterial and physic-chemical properties.

This study aimed to investigate the effect of addition of silver nanoparticles to epoxy resin based sealer, MTA based sealer and silicon based sealer in terms of sealing ability, solubility and antibacterial effect. Those three properties play an important role in the success of endodontic treatment. By using silver nanoparticles, we aimed to gain benefit from its physicochemical properties and antibacterial effect to enhance the properties of root canal sealers.