

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Role of Antificolin II Antibody in Lupus Nephritis

Thesis

Submitted for Partial Fulfillment of Master Degree in **Internal Medicine**

By

Ibrahim Sami Ibrahim

M.B.B.Ch, M.SC Cairo University

Supervised by

Prof. Dr. Mohamed Nazmy Farres

Professor of Internal Medicine and Clinical Immunology Faculty of Medicine, Ain Shams University

Dr. Sylvia Talaat Kamal

Lecturer of Internal Medicine and Clinical Immunology, Faculty of Medicine, Ain Shams University

Dr. Fatma Abdelrahman Ahmed

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my deepest gratitude and thanks to my beloved wife ASMAA, dear mother and my kids. You were my backbone in every step and every single day.

I'd like to express my respectful thanks and profound gratitude to **Prof./ Mohamed Mazmy Farris**, Professor of Internal Medicine and Clinical Immunology, Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I would like to express my hearty thanks to **Dr./ Sylvia Talaat Kamal** Lecturer of Internal Medicine and Clinical Immunology, Faculty of Medicine, Ain Shams University for her kind care, continuous supervision, valuable instructions, constant help, great assistance and support till this work was completed.

I would like to express my hearty thanks to **Dr./ Fatma**Abdelrahman Ahmed Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University for her support till this work was completed

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Obrahim Sami Obrahim Abdulaziz Sehsah

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Review of Literature	
Lupus nephritis	5
Diagnosis and management of lupus nephritis.	27
Antificolin II antibody	64
Patients and Methods	80
Results	91
Discussion	112
Summary	119
Conclusion	121
Recommendations	122
References	123
Arabic Summary	

List of Tables

Table No	o. Title	Page	No.
Table (1):	International Society of Nephrology/Renal Pa Society 2003 classification of LN		
Table (2):	Urine biomarkers that correlate with lupus n activity in cross-sectional studies	-	
Table (3):	Serum biomarkers that correlate with lupus n activity in cross-sectional studies		
Table (4):	Summary of biomarkers reviewed		52
Table (5):	The reported sensitivity and specificity of potential serum and urine biomarkers in nephritis	lupus	
Table (6):	Renal response criteria in global systemic erythematosus scoring tools		
Table (7):	National Institutes of Health Activity and Ch. Indices	•	
Table (8):	Commonly Used Regimens for Induct Remission in Proliferative Lupus Nephritis		
Table (9):	Demographic data of the three study groups:		91
Table (10):	Demographic data according to SLE activity		91
Table (11):	Clinical characteristics of patients with SLE		92
Table (12):	Medical data and duration of disease amor patients with and without renal affection	_	
Table (13):	Histopathological classification of renal among SLE patients with LN		
Table (14):	Laboratory investigations of the three study gr	oups	94
Table (15):	Treatment lines of SLE patients with and renal affection		
Table (16):	Antificolin-2 antibody titer between SLE and comparable controls	-	

List of Cables (Cont...)

Table No	o. Title	Page	No.
Table (17):	Antificolin-2 antibody titer between the thre groups	-	
Table (18):	Pairwise comparison of Kruskal Wallis test		97
Table (19):	Antificolin-2 antibody titer between activinactive SLE patients		
Table (20):	Relation between Antificolin-2 antibody an biopsy results among SLE patients with LN		
Table (21):	Comparison between Antificolin-2 antibod Anti-ds DNA among SLE patients with LN	•	
Table (22):	Correlation between Antificolin-2 antibody are parameters within SLE patients with LN group		
Table (23):	Comparison between Antificolin-2 antiboc clinical manifestations among active SLE pati		
Table (24):	Multiple linear regression analysis for affecting Antificolin-2 antibody level among SLE patients	g active	
Table (25):	Multiple linear regression analysis for affecting Antificolin-2 antibody level amor patients	ng SLE	
Table (26):	Multiple linear regression analysis for factors a Antificolin-2 antibody level among SLE patien LN	nts with	

List of Figures

Fig. No.	Title Pa	ige No.
Figure (1):	Pathogenesis of LN	9
Figure (2):	Pathogenesis of lupus nephritis	10
Figure (3):	The class 1 light microscopy with hematox and eosin staining is essentially normal	
Figure (4):	Class 3 LN light microscopy shows segme endocapillary proliferation, electron microsc shows subendothelial electron-dense imm deposits, and immunofluorescence microsc shows IgG along the glomerular capillary walls	copy nune copy
Figure (5):	The class 5 biopsy was stained with silver instruction of hematoxylin and eosin to better illustrate glomerular basement membrane material (black)	the
Figure (6):	Urine sediment findings in lupus nephr Acanthocytes are dysmorphic red blood cells indicate glomerular bleeding	that
Figure (7):	Algorithm for the management of class 5 lunephritis	
Figure (8):	L-ficolin structure. The glycosylated gene proof Mr 35 K forms a basic triplet subunit	
Figure (9):	The human FCN2 gene	70
Figure (10):	General view of complement activation	73
Figure (11):	Antificolin-2 antibody titer between the tl study groups	
Figure (12):	Validity of Antificolin-2 antibody differentiation between SLE patients and hear controls	lthy
Figure (13):	Validity of Antificolin-2 antibody differentiation between proliferative and r proliferative groups	for non-

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Validity of Antificolin-2 antibodifferentiation between SLE patients with SLE patients without LN	th LN and
Figure (15):	Validity of Antificolin-2 antibodifferentiation between active and inactive	•
Figure (16):	Antificolin-2 antibody level in prolife non-proliferative lupus nephritis	
Figure (17):	Antificolin-2 antibody level in differential biopsy classes	
Figure (18):	Comparison between Antificolin-2 ant Anti-ds DNA among SLE patients with	•
Figure (19):	Correlation between Antificolin-2 anti SLEDAI score among SLE patients affection	with renal

List of Abbreviations

Abb.	Full term
ACEi	Angiotensin-converting enzyme inhibitor
	According to American College of
	Rheumatology
<i>AI</i>	Activity index
ANA	Antinuclear antibodies
Anti- NCS	Anti-nucleosome
APO	A polipoprotein
	Apolipoprotein risk variants
ARB	Angiotensin receptor blocker
<i>BAFF</i>	B-cell activating factor
<i>BLC</i>	Blymphocyte chemoattractant
	B-lymphocyte stimulator protein
CCL2	Urinary MCP-1
CI	Chronicity index
CKD	Chronic kidney disease
CL-K1	Collectin-11
<i>CRHD</i>	Chronic rheumatic heart disease
CXCL16	Chemokine ligand 16
<i>ESI</i>	Electrospray ionization
	End-stage renal disease
FcgR	Fc receptors for IgG
FCN2	L-ficolin gene
FDs	Fibrinogen-like domains
<i>GBM</i>	Glomerular basement membrane
GFR	Glomerular filtration rate
<i>ICAM</i>	Intracellular adhesion molecule
ICAM-1	Intracellular adhesion molecule-1
<i>IFN-</i> α	Interferon- α
<i>ISN</i>	International Society of Nephrology

List of Abbreviations (cont...)

Abb.	Full term
Kim-1	. Kidney injury molecule-1
L-ficolin	
•	. Lupus nephritis
MAGE-B2	. Melanoma associated antigen gene B2
<i>MASP's</i>	.MBL/Ficolin associated serine proteases
	. Mannose–binding lectin
MCP-1	$. Monocyte\ chemoattractant\ protein ext{-}1$
	. Modification of Diet in Renal Disease
M-ficolin	.Ficolin-1
<i>MIG</i>	. Monokine induced by IFN-c
miRNAs	. MicroRNAs
<i>MS</i>	. Mass spectrometry
<i>NETS</i>	. Neutrophil extracellular traps
<i>OPG</i>	. Osteoprotegerin
pDCs	.Plasmacytoid dendritic cells
<i>pSLE</i>	. Pediatric SLE
PTX3	.Pentraxin 3
Q	. Quadrupole
<i>RAAS</i>	.Renin-angiotensin-aldosterone system
ROC	.Receiver operating characteristic curve
<i>RPS</i>	.Renal Pathology Society
<i>SLE</i>	. Systemic lupus erythematosus
<i>TOF</i>	. Time of flight tandem

Introduction

Systemic Lupus Erythematosus

LE is a chronic autoimmune disease that can affect virtually any organ of the body in which different immunological occasions can prompt a comparative clinical picture, described by a wide scope of clinical manifestations and target organs with erratic flares and abatements that in the long run lead to permanent injury.

SLE can affect several organs and systems, including the joints, skin, brain, heart, lungs, blood vessels, and kidneys. (*Colliard et al.*, 2018).

It can be diagnosed based on a combination of clinical findings and laboratory work. According to American College of Rheumatology (ACR) presence of 4 out of the 11 clinical criteria for diagnosis of SLE yields a sensitivity and specificity of 85% and 95% respectively.

Auto antibodies circulating the body directed against self-antigen as ds DNA, nuclear antigen and several cytoplasmic components feature main histopathology of SLE (*Ortega et al.*, 2010).

Lupus nephritis

It is one of the most serious complications of SLE

affecting almost 66-90% of lupus patients with variable incidence and prevalence depending on studied population. It is higher in Asian and Africans than Caucasians 55%, 51% and 14% respectively.

LN develops early in the course of lupus activity leading to development of end-stage renal disease (ESRD) after 10 years of renal affection in up to 25% of patients; however, it may appear after several years in 5% of patients known as delayed lupus nephritis.

Auto antibodies and immune complexes with subsequent infiltration by inflammatory cells in renal tissue is the most likely pathogenesis of LN (*Nisihara et al.*, 2013).

Complement system

As part of innate immunity, complement system plays a dual role in pathogenesis of SLE. Genetic deficiency of complement factors is associated with the occurrence of SLE, however, massive complement activation during lupus activity is a major contributor to lupus inflammatory reactions.

There are three distinct pathways for complement system activation.

Binding of the pattern recognition molecule C1q to antibody-antigen complexes initiate classical pathway.

Slow, spontaneous hydrolysis of the central complement