

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Visual-Motor Integration Abilities in a Sample of School Age Children with Specific Learning Disorder (reading disorder) Following Multi-Sensory Program Remediation: A Case Control Prospective Study

Thesis

Submitted for the Partial Fulfilment of M.Sc. degree in Neuropsychiatry

By

Rania El Sayed Mohamed ElFoliey

M.B.B.Ch. Ain Shams University

Under Supervision of

Prof. Dr. Mona Mahmoud El Sheikh

Professor of Psychiatry
Faculty of Medicine, Ain Shams University

Prof. Dr. Marwa Adel El Missiry

Professor of Psychiatry Faculty of Medicine, Ain Shams University

Prof. Dr. Eman Mohamed Shourab

Professor of Psychiatry Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University **2022**

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to **Prof. Dr. Mona Mahmoud El Sheikh,** Professor of Psychiatry, Faculty of Medicine, Ain Shams University,, for her valuable guidance and expert supervision, in addition to her great deal of support and encouragement. I really have the honor to complete this work under her supervision.

I would like to express my great and deep appreciation and thanks to **Prof. Dr. Marwa Adel El Missiry,** Professor of Psychiatry, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

I must express my deepest thanks to **Prof. Dr. Eman Mohamed Shourab,** Professor of Psychiatry, Faculty of Medicine,
Ain Shams University, for guiding me throughout this work and for
granting me much of her time. I greatly appreciate her efforts.

Special thanks to all members of my Family, for their continuous encouragement, enduring me and standing by me.

🗷 Rania El Sayed Mohamed El Foliey

List of Contents

Subject		Page No.
List of Abbreviat	ions	i
List of Tables	••••••	ii
List of Figures	••••••	iii
Introduction	••••••	1
Aim of the Work	•••••	6
Review of Literat	ture	
Chapter One:	History of Specific Learning Disorders	7
Chapter Two:	Specific Learning Disorders	16
Chapter three	Multisensory Processing and Spe Learning Disorders	
Chapter four:	The Impact of Multisensory Train	ning 54
Chapter five:	Orton-Gillingham program	59
Patients and Methods		65
Results	•••••	76
Discussion	••••••	94
Limitations of the	e Study	110
Conclusions	••••••	104
Recommendation	ıs	105
Summary		106
References		108
Arabic Summary	······································	

List of Abbreviations

Abbr. Full-term

ADHD : Attention- deficit/ hyperactivity disorder

ATNR : Asymmetrical tonic neck reflex

DPT : Dyslexic Training Program

DSM: Diagnostic and Statistical Manual of Mental Disorders

ESDT : Early screening dyslexia test

IDEA : Individuals with Disabilities Education Act

IQ : Intelligence quotient

LD : Learning Disabilities

MMN: Mismatch negativity

PET : Positron emission tomography

SD : Standard deviation

SLD : Specific Learning Disorders

SPSS : Statistical package for Social Science

SWLD : Students with Learning Disabilities

TNR : Tonic neck reflex

VMI : Visual-motor integration test

VWFA: Visual word form area

WISC : Wechsler Intelligence Scale for children

List of Tables

Table No.	Title	Page No.
Tables in I	Review:	
Table (I):	Criteria for diagnosis of S _I developmental disorders	
Tables in 1	Results:	
Table (1):	Demographic data of included spopulation	-
Table (2):	Psychiatric assessment of incepatients	
Table (3):	Comparison of visual motor integ (VMI) before and after therapy	
Table (4):	Comparison of visual perception and after therapy	
Table (5):	Comparison of motor coordinates before and after therapy	

List of Figures

Figure No.	Title	Page No.
Figure (1):	Etiology of dyslexia	19
Figure (2):	Neurophysiology of dyslexia	26
Figure (3):	Clinical presentation of dyslexia.	36
Figure (4):	Areas of the left cerebral hemis in which abnormal response neuroimaging studies were repor- adults with dyslexia compared controls	es in ted in with
Figure (5):	Benefits of multisensory learning	;56
Figure (6):	The Orton-Gillingham Approach	63
Figure (7):	Gender distribution of included sa population	
Figure (8):	Distribution of child order in study and control groups	
Figure (9):	Bar chart between groups according to age of mother during pregnance	•
Figure (10):	Bar chart between groups according to Wechsler IQ score	_
Figure (11):	Bar chart between groups according to Nassra Gelgel score	
Figure (12):	Bar chart between groups according to VMI test, Motor coording visual perception according raw s	ation,

Figure (13):	Bar chart between groups according to VMI test, Motor coordination, visual perception according standard score
Figure (14):	Bar chart between groups according to VMI test, Motor coordination, visual perception according scaled score84
Figure (15):	Bar chart between groups according to VMI test, Motor coordination, visual perception according percentile score84
Figure (16):	Comparison of visual motor integration (VMI) before and after therapy regarding raw score
Figure (17):	Comparison of visual motor integration (VMI) before and after therapy regarding standard score
Figure (18):	Comparison of visual motor integration (VMI) before and after therapy regarding scaled score87
Figure (19):	Comparison of visual motor integration (VMI) before and after therapy regarding percentile score87
Figure (20):	Comparison of visual motor integration (VMI) before and after therapy regarding visual raw score89
Figure (21): (Comparison of visual motor integration (VMI) before and after therapy
	regarding visual standard score89

Figure (22):	Comparison of visual motor integration (VMI) before and after therapy regarding scaled score.	90
Figure (23):	Comparison of visual motor integration (VMI) before and after therapy regarding visual percentile score	90
Figure (24):	Comparison of motor coordination before and after therapy regarding motor raw score.	92
Figure (25):	Comparison of motor coordination before and after therapy regarding motor standard score.	92
Figure (26):	Comparison of motor coordination before and after therapy regarding motor scaled score.	93
Figure (27):	Comparison of motor coordination before and after therapy regarding motor percentile score.	93
Figures in A	ppenidx	
Figure (I):	The interactive light up rainbow panel device	I
Figure (II):	VMI format	I
Figure (III):	Motor coordination format	II
Figure (IV):	Visual perception format	III
Figure (V):	Interactive TV screen 45 inches	IV
Figure (VI):	Scooter board 50cm x 50cm	IV
Figure (VII):	8 shaped white board	V

Introduction

where one or more of basic processes involved in understanding or in using language spoken or written are affected despite of average IQ and proper education sufficient to age group. Visual processing and motor integration are related to poor academic outcomes (visual processing is up to 6.6% for reading problem, 2.2% for math computation and 2.7% for spelling) (*Molloy et al., 2017*). That is why the aim of this study is to determine the correlation and to provide a program that is efficient for use to address such problem in children with specific learning disorders especially those with reading disorder. Using Criteria for diagnosis of Specific Learning Disorder according to DSM 5 (*American psychiatric Association diagnostic and statistical manual of mental disorders 5th edition DSM-5, 2013*).

The four diagnostic criteria are to be met based on a clinical senses of the individual's history (developmental, medical, family, educational, school reports and psychoeducational assessment).

A) Difficulties learning and using academic skills as indicated a difficulty in learning and using Academic Skills, as indicated by the presence of at least one of the following symptoms that have persisted for at least six

months, despite the provision of interventions that target those difficulties.

- 1. Inaccurate or slow and effortful word reading.
- 2. Difficulty understanding the meaning of what is read.
- 3. Difficulties with spelling
 - a. Add
 - b. Omit
 - c. Substitute vowels or consonants
- 4. Difficulties with written expressions
- 5. Difficulties mastering number sense, number facts, or calculation
- 6. Difficulties with mathematical reasoning
- B) The affected academic skills are substantially and quantitatively below those expected for the individuals chronological age and cause significant interference with academic and occupational performance.
- C) The learning difficulties beginning during school age years but may not become fully manifest until the demands for those affected academic skills exceed individuals limited capacities.
- D) The learning difficulties are not better accounted for by intellectual disabilities and corrected visual or auditory acuity other mental or neurological disorders. Language, inadequate educational instruction.

Prevalence:

Reading disorder is the most common form of learning difficulties, with prevalence of, at least 10% of any given population depending on the orthographic system worldwide. 4% of school age children in the United States (*Sadock et al.*, 2009).

Gender prevalence: increased boy prevalence of reading disorder worldwide than girls reflected a bias of selection, boys act out when having academic problems while girls tends to appear more as if not interested in studding and being missed diagnosed, there is no significant gender difference (*Quinn and Wagner*, 2015).

In Egyptian population, boy to girl prevalence is 1.3:3 for children (*El Sheik, et al., 2016*) 10% prevalence in UK, and world-wide (*Hennessy et al., 2020*).

Problems of visual motor integration in Specific Learning Disorder:

Visual motor integration is the ability of the eye and hand to work together in an effective pattern and functional proper way to translate what is read into Motor activity, therefore helping the comprehension of symbols seen visually (*Carsone et al., 2021*). Inappropriate interpretation of visual, auditory, proprioception signals certainly affects motor