

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

FDG-PET/CT as a predictive tool for the evaluation of the aggressiveness of rectal cancer

Thesis

 $Submitted \ for \ Partial \ Fulfillment \ of \ Doctorate \ Degree \\ in \ Radio diagnosis$

Under supervision of

Prof. Dr. Sahar Mohamed El Gaafary

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Dr. Remon Zaher Elia

Assistant Professor Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Rasha Salah El din Hussein

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2021

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Sahar Mohamed El Gaafary,**Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Remon Zaher Elia**, Assistant Professor Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr.** Rasha Salah El din **Hussein**, Lecturer of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

Oman Sherif

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	5
Review of Literature	
Anatomy of the Rectum	6
Pathology of Colorectal Cancer	16
Technical Aspects of PET/CT	45
PET/CT Radiological Findings in Rectal Cance	er63
Patients and Methods	84
Results	91
Case Presentation	98
Discussion	114
Summary and Conclusion	121
References	123
Arabic Summary	

List of Abbreviations

Abb.	Full term
18F FDG-PET/C	T.[18F] fuorodeoxyglucose positron emission
	tomography/computed tomography
AJCC	American Joint Committee on Cancer
	Brown adipose tissue
BMI	Body mass index
	Carcinoembryonic antigen level
	Colorectal cancers
CRM	Circumferential resection margin
CTV	Clinical target volume
EANM	European association of nuclear medicine
EMV	Extramural venous invasion
	Familial adenomatous polyposis
	Gastrointestinal stromal tumors
GTV	Gross tumour volume
IARC	International Agency for Research on Cancer
IMV	Inferior mesenteric vein
MAC	Mucinous adenocarcinomas
	Maximum-intensity-projection
MRF	Mesorectal fascia
MTV	Mean tumor volume
NACT-RT	Neoadjuvant chemotherapy and/radiotherapy
	The national cancer institute
NHL	Non-Hodgkin's lymphoma
NMAC	Non-mucinous adenocarcinoma
OARs	Organs at risks
OS	Overall survival
RI	Retention index
	Region of interest
SRCC	Signet ring cell carcinoma
SUV	Standardized uptake value
TLG	Total lesion glycolysis
TME	Total mesorectal excision
TRG	Tumor regression grade
UICC	Union International Center Cancer

List of Tables

Table No.	Title	Page No.
Table (1):	Dukes classification	37
Table (2):	TNM staging system for colon cancer	38
Table (3):	TNM Staging	39
Table (4):	Methods of FDG Uptake Assessment Combined PET and CT	
Table (5):	Methods of Reporting SUV	51
Table (6):	Different pathological types of rectal in study population	
Table (7):	Patient and tumor characteristics	93
Table (8):	Demographic and PET/CT character according to the different histopathologroups	ological
Table (9):	Correlations between metabolic para of FDG-PET/CT and patient characteristics	meters /tumor

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Anatomy of the rectum & anal cana Drawing of the pelvis (sagittal view a tumor (brown) arising from the (tan) and invading the mesored (gray).) shows rectum tal fat
Figure (3):	(A and B): (A) Sagittal and (B) diagrams show rectum (R), mesore (yellow), mesorectal fascia (MRF) is anterior peritoneal reflection bladder (B), prostate (P). (b) Cross at upper, mid, and low rectum peritoneal reflection (red) and MRF	ctal fat in blue, (red), section shows
Figure (4):	Blood supply of the large intestine	12
Figure (5):	Venous drainage of the large intesti	ne13
Figure (6):	Drawing illustrates the most condal pathways of tumor spread in	n rectal
	cancer	
Figure (7):	Gross features of cancer colon	22
Figure (8):	An example of moderately different adenocarcinoma showing complete glandular structures in a desmostroma	olicated
Figure (9):	Desmoplastic reaction characterize proliferation of spindle cells surroun adenocarcinomatous gland	ding an
Figure (10):	Necrotic debris ("dirty necrosis")	within
Figure (11).	the lumina of adenocarcinomatous g	
Figure (11):	Mucinous adenocarcinoma s abundant extracellular mucin	howing 27

Fig. No.	Title	Page No.
E: (10).	Circust via a cell consistence	00
Figure (12):	Signet ring cell carcinoma	
Figure (13):	Medullary carcinoma showing a puborder at the tumor edge	•
Figure (14):	Medullary carcinoma showing differentiated histology and t	cumor-
	infiltrating lymphocytes	29
Figure (15):	Spread of cancer colon	34
Figure (16):	TNM staging of cancer colon	38
Figure (17):	Gross photograph of TME specir multiple slices	
Figure (18):	Gross photograph of one slice colorectal carcinoma specimen	of a
Figure (19):	PET/CT protocol providing a multable abdominal CT scan, a breath-hold CT scan, and a whole-body contrascan performed during shallow breath-	iphase chest .st CT
	for fusion with the PET images	48
Figure (20):	Patient with metastatic color carcinoma and hepatic metastasis	
Figure (21):	Normal distribution of 18F-FDG	
Figure (22):	Physiologic muscle activity	
Figure (23):	Patterns of physiologic skeletal r FDG uptake on PET/CT in four dif	nuscle fferent
Figure (24):	patients	
1 igui (2 i / ·	scan for staging of inflamr	natory
E' - (95)	carcinoma of the left breast	
Figure (25):	61-y-old patient with lung cancer ingested barium for an esophagograbefore PET/CT scan	m 1 d

Fig. No.	Title Page No.
Figure (26):	(A) High-density metallic implants generate streaking artifacts and high CT numbers (arrow) on CT image. (B) High CT numbers will then be mapped to high PET attenuation coefficients, leading to overestimation of activity concentration (C) PET images without attenuation correction help to rule out metal-induced artifacts
Figure (27):	Curvilinear cold artifact (arrow) is commonly seen on dome of diaphragm/liver or at lung base because of respiration mismatch on PET images with CT attenuation correction
Figure (28):	(A) 58-y-old man with colon cancer61
Figure (29):	(a) Attenuation-corrected axial fused 18F-FDG PET/CT image shows a focus of hypermetabolism in the left axilla (arrow). (b) Attenuation-uncorrected fused 18F-FDG PET/CT image obtained at the same level shows lack of activity in the intensely enhancing (high-attenuation) left axillary vein (arrow)
Figure (30):	Midline distal left primary colon carcinoma at an unusual location related to anatomical variation
Figure (31):	Intense hypermetabolic activity in a cecal carcinoma primary lesion with multiple adjacent foci of uptake identified consistent with diffuse peritoneal metastasis

Fig. No.	Title	Page No.
Figure (32):	(A) Focal intense radiotracer uptak subcentimeter left pelvic side wall node is consistent with metastasi Axial fusion PET/CT image in the patient 3months later demon enlargement of the same pelvic sidelymph node	lymph s. (B) same strates le wall
Figure (33):	A 54-year-old man with recent diagracolon carcinoma and liver metastases.	
Figure (34):	Axial fusion PET/CT demonstrates i focal radiotracer uptake on the margin of a radiofrequency ablation	lateral site in
Figure (35):	A 33-year-old man undergoing asc colon cancer resection two years Coronal PET image	ending s ago.
Figure (36):	Patient status post left hemicolector colon cancer without change in CEA le	my for
Figure (37):	Patient status post left hemicolector colon cancer and increasing CEA lev	my for
Figure (38):	The correlation between SUVmax a metabolic parameters	nd the
Figure (39):	The correlation between the me parameters and rectal histopathological type	tabolic tumor
Figure (40):	The correlation between the me parameters and size of the rectal turn	tabolic
Figure (41):	Case 1	
Figure (42):	Case 2	
Figure (43):	Case 3	
Figure (44):	Case 4	

Fig. No.	Title	Page No.
	Case 5	106
_	Case 6	
_	Case 7	
•	Case 8	
Figure (49):	Case 9	112

Introduction

Colorectal cancer (CRC) is the third commonest cancer worldwide with nearly 1.4 million new cases diagnosed annually (*Chiu et al.*, 2018).

Colonoscopy is considered the most effective tool for the diagnosis of CRC because it can be used to localize and biopsy lesions throughout the large intestine, detect synchronous neoplasms, and remove polyps simultaneously. The most widely accepted staging system of CRC remains the TNM staging system proposed by the American Joint Committee on Cancer, which was updated in 2010 (*Agarwal et al.*, 2014).

Determination of tumour type is critical because different tumour types vary regarding the radio-sensitivity, local behavior, and propensity for regional and systemic metastasis. The histological grade of tumours is an important indicator of the potential for local invasion or systemic metastases. Tumour staging as determined by clinical evaluation, imaging studies and histological evaluation are necessary to establish the extent of the tumour, both locally and systemically (*Nabi et al.*, *2010*).

Microscopically 98% of all CRC are adenocarcinoma. The major subtypes are non-mucinous adenocarcinomas, mucinous or colloid adenocarcinoma and signet ring cell carcinoma. Adenocarcinomas of colon and rectum are graded predominantly on the basis of the extent of glandular