

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Evaluation of the Management of Blunt Abdominal Trauma in Pediatric Patients in Ain Shams University Hospital: A Prospective Cohort Study.

Thesis

Submitted for Partial Fulfilment of M.D. Degree in Pediatric Surgery

Ву

Mohamed Hassan Ahmed Mohamed

M.B.B.Ch 2013, Master of General Surgery 2018

Under Supervision of

Prof. Dr. Mohamed Soliman El Debeiky

Professor of Pediatric Surgery Faculty of Medicine, Ain Shams University

Prof. Wael Ahmed Ghanem

Assistant Professor of Pediatric Surgery Faculty of Medicine, Ain Shams University

Prof. Mohamed Hisham Soliman

Assistant Professor of Pediatric Surgery Faculty of Medicine, Ain Shams University

Dr. Nader Nassif Guirguis

Lecturer of Pediatric Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mohamed Soliman El Debeiky**, Professor of Pediatric Surgery, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Wael Ahmed Ghanem**, Assistant Professor of Pediatric Surgery,
Faculty of Medicine, Ain Shams University, for his
sincere efforts, fruitful encouragement.

I am deeply thankful to **Prof.** Mohamed **Wisham Soliman**, Assistant Professor of Pediatric Surgery, Faculty of Medicine, Ain Shams University, for his outstanding support, active participation and guidance.

Last but not least my sincere thanks and appreciation to **Dr. Mader Massif Guirguis,** Lecturer of Pediatric Surgery, Faculty of Medicine, Ain Shams University for his meticulous supervision, great help, instructions through this study.

I would like to express my hearty thanks to my mother, father, brother and my wife for inspiring and supporting me until this work was completed.

Mohamed Hassan Ahmed Mohamed

Tist of Contents

Title	Page No.
List of Tables	
List of Figures	
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
Mechanism of injury	
Past medical history	7
Diagnosis	
Lab investigations	
Imaging	
Management	
Organs injury	
Spleen	41
Liver	47
Kidney	54
Pancreas	65
Intestine	
Suprarenal "adrenal glands"	79
Bladder	81
Diaphragm	86
Abbreviated hospital length of stay	87
Discharge and follow-up care	90
Patients and Methods	92
Results	97
Discussion	109
Conclusion	122
Recommendations	123
Summary	124
References	
Arabic Summary	

Tist of Tables

Table No.	. Title	Page No.
Table 1:	Organ injury scale for renal injuries	s 55
Table 2:	Shows patients demographics, medinjury, mortality, intervention, distrogan injury, Rate of triphasic abdor	ribution of
Table 3:	Associations between Pre-CT Find findings in Triphasic CT of the Abdo	•
Table 4:	Show sensitivity of certain para detect clinically important IAI	
Table 5:	Injuries of SOI (spleen, liver, renal, and its distribution according to high grades, mechanism of injury admission, type of intervention	mild and , place of
Table 6:	Distribution of non-SOI + adrenals to no. of cases, type of intervention abdominal CT	, triphasic
Table 7:	Operated cases of SOI (grade, prand operative details)	
Table 8:	Show operated cases of other (intestine, bladder, urethra, perine cases, operative intervention	um) no. of
Table 9:	Cases managed by interventional techniques.	
Table 10:	Shows follow up to 7 out of 12 case injuries.	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	ATOMAC Guidelines for BLSI	31
Figure 2:	Pre-embolization of renal artery anuyresm	-
Figure 3:	Post embolization of renal artery aneyresm	_
Figure 4:	Spleen grade 5 ct and liver grade 4 non-operatively.	
Figure 5:	Grade 5 spleen injury manage operatively	
Figure 6:	Spleen grade 3 lower pole laceration	46
Figure 7:	Grade 5 liver, grade 3 spleen, palaceration managed non-operatively.	
Figure 8:	Grade 4 liver injury	53
Figure 9:	Shattered right kidney grade a complicated by renal artery pseudoa and expanding hematoma	neyresm
Figure 10:	PUJ complete disruption. CT scan vereconstruction was ordered complete arrest of contrast at PUJ evidence of leakage and no visualist the left ureter	showing with no zation of
Figure 11:	Pancreatic laceration at neck conservative, follow-up MRCP shows affection	s no duct
Figure 12:	Duodenal perforation as shown triphasic of abdomen with subhep perineheric collection with air foci	atic and

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 13:	Duodenal perforation posterior wal intra-operative	-
Figure 14:	Jejunal perforation	78
Figure 15:	Right adrenal hematoma in enabdominal CT	•
Figure 16:	Bladder injuries "intra-peritoneal"	85
Figure 17:	Algorithm show management of poor isolated abdominal trauma starting from the ER	patient
Figure 18:	Algorithm by Leeper et al effectiveness guidelines	

Tist of Abbreviations

Abb.	Full term
AAST	American Association for the Surgery of
-	Trauma
<i>ALT</i>	Alanine aminotransferase
	Aspartate aminotransferase
	Advanced Trauma Life Support
	Arizona-Texas-Oklahoma-Memphis-
	Arkansas Consortium
<i>BAT</i>	Blunt abdominal trauma
<i>BATiC</i>	Blunt Abdominal Trauma in Children
BLSI	Blunt liver and spleen injuries
CEUS	Contrast enhanced Ultrasonography
	Clinical prediction rule
CT	Computed tomography
	Diagnostic peritoneal lavage
<i>FAST</i>	Focused abdominal ultrasound for trauma
	Intra-abdominal injury
<i>ICU</i>	Intensive care unit
<i>ISS</i>	Injury severity score
<i>IVC</i>	Inferior cava vein
MODS	Multiple organ dysfunction syndrome
<i>NOM</i>	Non-operative management
<i>NPV</i>	Negative predictive value
PECARN	Pediatric Emergency Care Applied
	Research Network
<i>PMG</i>	Practice management guideline
PUJ	Pelvi-ureteric junction
<i>RBC</i>	$Red\ blood\ cells$
<i>RUG</i>	Retrograde urethrography
<i>SAE</i>	Splenic artery embolization
SOI	Solid organ injury
<i>UA</i>	Urinalysis

Introduction

trauma remains a significant bdominal cause morbidity and mortality in infants and is one of the leading cause of solid organ injury (SOI). Accidents leading to polytrauma are the most common cause of death in children less than 16 years of age (Falcone et al., 2007; Cramer, 1995; Stauffer, 1995).

If blunt abdominal trauma is encountered, course and prognosis depend decisively on the damage to solid and nonsolid organs. Injuries to the pancreas and the genitourinary system generally do not lead to prompt death but may cause considerable permanent problems, such as hypertension or renal or pancreatic insufficiency. However, injuries to liver and spleen can lead to death. Children are at increased risk due to several reasons as low body weight, the force received is dissipated over a small surface area, less protection to their internal organs attributed to their weak muscles, less fat and maliable ribs. In certain scenarios, particularly in preverbal children or children with a decreased level of consciousness, identification of an abdominal injury can be challenging, and failure to detect these injuries initially can lead to preventable complications (Fayiga et al., 1994; Stauffer, 1995; Röher et al., 1997; Zwergel and Zwergel, 1993; Rose and Marzi, 1996).

To provide optimal treatment for children with blunt abdominal trauma, rapid and appropriate clinical and radiologic diagnostics have to be performed.

Hemodynamically stable patients will undergo clinical radiologic examination and investigations. Computed tomography (CT) is the standard of care for the evaluation of suspected intra-abdominal injury (IAI) related to blunt abdominal trauma. It allows accurate grading of these solid organ injuries but remains less reliable for the diagnosis of and pancreatic injuries. Therefore, alternative intestinal methods for the safe and reliable diagnosis of IAI after blunt abdominal trauma need to be used.

The need for urgent laparotomy in children with blunt abdominal trauma depends on initial hemodynamic stability and the response to resuscitation. Currently, more than 90% of pediatric patients with IAI caused by blunt abdominal trauma will be treated conservatively (Beaver et al., 1987; Haftel et al., 1988; Kane et al., 1988; Taylor et al., 1988; Sherck and Oakes, 1990, Nastanski et al., 2001).

Injured children are cared for not only at dedicated pediatric trauma centers but also in emergency departments and clinics that may not routinely evaluate children for these injuries. All clinicians who care for children with potential blunt abdominal injuries should be aware of current concepts

related to the diagnosis and treatment of pediatric blunt abdominal trauma.

The review will highlight issues in the evaluation and management of pediatric blunt abdominal trauma (BAT). We will examine the recent literature focusing on the utility of physical examination, laboratory data and imaging (both ultrasonography and computed tomography) in detecting IAI with illustration variable methods of management.

AIM OF THE WORK

valuation of our practice in management of SOI and non-SOI after blunt abdominal trauma in pediatrics and in using pelvi-abdominal CT as a diagnostic tool.