

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Role of Doppler ultrasound surveillance in early detection of vascular complications among liver transplant recipients

Submitted for partial fulfillment of MD degree in Diagnostic and Intervention Radiology

By:

Ahmed Abdellatif Abdelhaleem Daoud

M.B.B.C.H., M.Sc. Diagnostic and Intervention Radiology

Supervised By:

Prof. Dr. Lobna Abdelmoniem Habib

Professor of Diagnostic and Intervention Radiology.

Faculty of Medicine Ain Shams University

Prof.Dr. Mohamed Sobhy Hassan

Assistant. Professor of Diagnostic and Intervention Radiology

Faculty of Medicine Ain Shams University

Prof.Dr. Ahmed Hassan Soliman

Assistant. Professor of Diagnostic and Intervention Radiology

Faculty of Medicine

Ain Shams University

Faculty of medicine

Ain Shams university

2021

ACKNOWLEDGMENT

I would like to express my deepest gratitude and cardinal appreciation to **Prof. Dr. Lobna Abdelmoniem Habib** Professor of Diagnostic and intervention Radiology Faculty of Medicine - Ain Shams University, who kindly supervised and motivated the performance of this work.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Sobhy Hassan** Assistant Professor of Diagnostic and intervention Radiology. Faculty of Medicine - Ain Shams University for his keen guidance and valuable advice.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ahmed Hassan Soliman**, Assistant professor of Diagnostic and Intervention Radiology. Faculty of Medicine - Ain Shams University for his continuous supervision, valuable advices, constant support and great help throughout this work.

LIST OF CONTENTS

).
7
6
6
53
6
4
6
0
3
6
9
7

LIST OF TABLES

Number	Content	<u>Page</u>
Table 1	Shows the total number of our study cases with the negative and positive cases for vascular complication	<u>148</u>
Table 2	Shows the statistical parameters of our study with the sensitivity and specificity of DUS	<u>149</u>

LIST OF FIGURES

NO	Short Caption	Page
1. Fig 1	Liver arterial anatomy.	48
2. Fig 2	Liver portal venous anatomy.	49
3. Fig 3	Liver segmental anatomy.	50
4. Fig 4	3D volume rendered liver arteries.	51
5. Fig 5	3D volume rendered liver arteries.	51
6. Fig 6	Cor.MIP normal arterial variant.	52
7. Fig 7	Thin slap MIP segment IV variant.	57
8. Fig 8	MIP supply to segment IV variant.	58
9. Fig 9	Portal venous anatomy variations.	59
10.Fig 10	MIP shows normal hepatic veins.	61
11.Fig 11	Surgical plan for transplant.	64
12.Fig 12	Portal vein size mismatch.	82
13. Fig 13	Color DUS and PWD of HA.	83
14.Fig 14	IODUS of RHV.	85
15. Fig 15	Normal HA waveform.	89
16.Fig 16	IODUS showing increased HA RI.	92

17. Fig 17	PO-DUS shows increased PVV.	95
18. Fig 18	PV size Mismatch.	105
19. Fig 19	PO- PV stenosis.	107
20. Fig 20	IODUS-DUS PVT.	109
21. Fig 21	IODUS HA dissection.	114
22. Fig 22	Gastro-duodenal arterial steal.	118
23. Fig 23	PO-HA stenosis.	120
24. Fig 24	Day 3 PO HA DUS with no flow.	139
25. Fig 25	CT arteriography no HA flow.	139
26. Fig 26	DUS HA recanalized.	140
27. Fig 27	CT: Slender Deeply seated HA.	141
28. Fig 28	DUS damped HA flow.	142
29.Fig 29	DUS Day 3 PV thrombosis.	144
30.Fig 30	DUS HA Day 1 PO	153
31.Fig 31	DUS PV Day 1 PO	153
32.Fig 32	DUS MHV day 1 PO	154
33.Fig 33	DUS HA No flow.	157
34.Fig 34	IODUS Main PV No flow.	160
35.Fig 35	DUS Day 3 PV Thrombosis.	163

36.Fig 36	DUS Day 3 PV thrombosis.	163
37.Fig 37	DUS HA Intragraft thrombosis	166
38.Fig 38	CT arteriography no HA flow	166
39.Fig 39	DUS HA pre-anastomotic	169
40.Fig 40	DUS HA damped flow.	172
41.Fig 41	DUS shows False +ve HA.	175
42.Fig 42	DUS PVS anastomotic site.	178
43.Fig 43	IODUS HA damped anastomotic	182
44.Fig 44	PO HA DUS recanalized.	182

LIST OF ABBREVIATIONS

Abb.	Full term
ALDLT	Adult living Donor Liver
ALDLI	Adult living Donor Liver
ATT	Transplant
AIH	Autoimmune Hepatitis
BMI	Body Mass Index
CT	Computed tomography
DSA	Digital Subtraction Imaging
DUS. US	Doppler Ultrasound.
	Ultrasound.
ESLD	End-Stage Liver Disease.
GRWR	Graft to Recipient Weight
	Ratio
HA/HAT/HAP/HAR/HAS	Hepatic Artery/
RHA/LHA	Thrombosis/Pseudo-
	aneurysm/Rupture/Stenosis.
	Right and left HA.
HCC	Hepato-celleular Carcinoma.
HRS	HepatoRenal Syndrome
HVs, RHV, LHV, MHV	Hepatic veins. Right Left and
	Middle Hepatic veins.
HVT/HVS	Hepatic vein
	Thrombosis/Stenosis.

Intra-operative Doppler
Ultrasound.
Intra-operative/Post-
operative.
Inferior vena cava
Liver Attenuation Index
Magnetic resonance imaging
Model for End-Stage Liver
Disease
Non-alcoholic Fatty Liver
Disease
Non-alcoholic Steato-hepatitis.
Primary biliary
cirrhosis/cholangitis
Portal vein, Right and left PV
PV
thrombosis/Setnosis/Velocity.
Spontaneous Bacterial
Peritonitis
Total liver volume
Trans-jugular Intra-hepatic
Portosystemic Shunt.
Post-Operative

INTRODUCTION

Introduction

Living donor liver transplantation (LDLT) has been the last resort to efficiently treat end-stage liver disease boosted by the recent advances as regard the surgical technology, radiological appliances and new immunesuppressants. (**Fisher et al., 2017**).

Vascular complications among liver transplant recipients are considered as major threats to liver transplant recipients' survival. LDLT (Living donor liver transplantation) recipients are prone to suffer from vascular complications due to many reasons; for example, the nature of slender anastomotic vessels and their unavoidable surgical manipulation through the reconstruction process.

Routine intra-operative and postoperative surveillance using recent advances in Doppler ultrasound devices is believed to play a major role in early diagnosis of any possible vascular complications allowing timed and appropriate management, eventually increasing chances of survival for liver graft and recipients. (Shi et al.,2021).

Multimodality diagnostic tools along with minimally invasive interventional radiology procedures are the new revolutionary solutions to identify and manage post liver transplantation vascular complications starting from the intra-operative evaluation, through the early and late phase post-operative follow-up. (**Delgado-Moraleda et al.**, **2019**).

The HA blood flow has been falsely assumed to play a passive role in the liver hemodynamics post-transplantation, as per review to many prior evidence-based data proving the inverse relationship between the HA and PV blood flow especially at the intra-operative evaluation and early post-operative surveillance.

The arterial flow is seen inversely related to the portal venous flow and changes of the blood flow in the HA and PV are reciprocally counteracted in an interplay known as the hepatic arterial buffer system (HABR). These changes are noted along with many other hemodynamic changes post ALDLT. (Salman et al., 2021).