Menoufia University Faculty of Electronic Engineering Dept. of Electrical Communications Engineering

Adaptive Arrays for Mobile Radio Communications

B16978

A Thesis submitted for the degree of M.Sc.

By

Eng. Yasser Attia Albagory

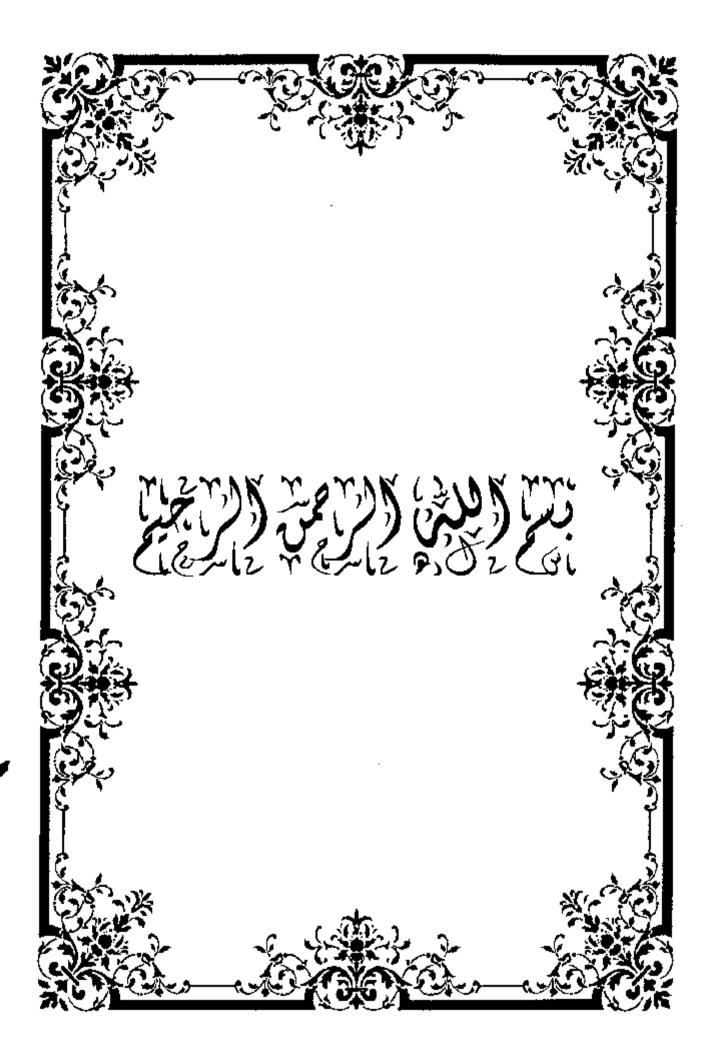
Supervised By

Prof. Dr. Mohiy M. Hadhoud

Faculty of Computers & Information Menoufia University

[M.H. Hadrand)

Prof. Dr. Mostafa A. Nofal


Prof. Dr. Moawad I. Dessouky

Dept. of Electrical Communications Eng. Faculty of Electronic Engineering Menoufia University Dept. of Electrical Communications Eng. Faculty of Electronic Engineering Menoufia University

M.T. Dessoury

2002

14/2/2001

į

j

4.

1.1

Acknowledgments

First and foremost, I am thankful to God, the most gracious most merciful for helping me finishing this work. It is a pleasure to acknowledge my supervisors that have profoundly influenced me with guidance and support. I do not know with whom I may begin, Professor Mohiy Hadhoud, Professor Moawad Ibraheim, and Professor Mostafa Nofal provided me with generous and continuous support for attendance at numerous technical meetings and discussions with grateful encouragement, they are really a great and excellent teamwork.

I am indebted to my father for teaching me the importance of hard work and perseverance and for instilling in me the confidence that I could succeed at whatever I chose to do.

I finally dedicate this work to the person who is usually beside me in all happy as well as hard times and continuously praying for the desire of my success.

ABSTRACT

An analysis to the high-altitude platforms communications system is done with the application of adaptive antenna arrays indicating the radio coverage parameters and the main factors that affect the system performance. Several coverage schemes are proposed based on switched-beam antennas for the macrocellular regions that need large area radio coverage with the expectation that the users may exist at any location within these regions. These schemes have shown a reduction in the power consumption, increase in user location accuracy and efficient utilization of the spectrum. Of these approaches, the beam splitting one sequentially splits wider coverage beams into narrower sub-beams, which when compared with the other possible schemes can be considered as a compromise between hardware requirements and processing complexity.

Regarding the positional instability of the platform and the resulting problems of handovers and location updating, a novel cellular structure is proposed that adopts ring-shaped cells instead of the traditional hexagonal cells configuration. This innovated structure can be achieved by adaptive antenna arrays at the platform. The array pattern constituting these cells is resulted from a scanning operation of multiple of beams, which is named as multi-beam scanning approach in which a number of azimuthally equispaced beams scan in the azimuth plane with constant elevation angle. Definitions of the beam scanning rate and beam visiting time are deduced. This new cellular structure improves the system performance, as it is capable of reducing the transmitted power, simplifies the location updating and handover algorithms and rates. The adaptation of the cell area to meet teletraffic changes from hour to hour is easier with this structure than utilizing the conventional hexagonal one.

X

LIST OF PUBLICATIONS

- [1] M. Hadhoud, M. Dessouky, M. Nofal, Y. Albagory, "Two-dimensional switched-beam smart antennas for stratospheric platform cellular communications", Proceeding of The IEEE International Conference on Software, Telecommunications, and Computer Network (SoftCOM 2001), Split Dubrovnik, Croatia, Ancona Bari, Italy, pp. 279-285, 9-14, October 2001.
- [2] M. Nofal, M. Dessouky, M. Hadhoud, Y. Albagory, "A novel cellular structure for the stratospheric platform mobile communications," Proceeding of The Nineteenth National Radio Science Conference (19th NRSC' 2002), Alexandria, Egypt, pp. 354-362, 19-21 March 2002.
 - *Also has been accepted for presentation and publication in the 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA, July 14-18, 2002.
- [3] M. Nofal, M. Dessouky, M. Hadhoud, Y. Albagory, "Performance and feasibility of different switched-beam antennas for the stratospheric platform mobile communications covering newly developing regions," Proceeding of The Nineteenth National Radio Science Conference (19th NRSC' 2002), Alexandria, Egypt, pp. 133-140, 19-21 March 2002.
 - *Also has been accepted for presentation and publication in the 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA, July 14-18, 2002.
- [4] M. Hadhoud, M. Dessouky, M. Nofal, Y. Albagory, "Smart Antennas for High Altitude Platforms Wireless Communications," has been accepted for presentation and publication in the Wireless 2002 Conference in Calgary, Alberta, Canada, July 8-10, 2002.

CONTENTS

LIST OF FIGURES	is
LIST OF TABLES	yi
1 INTRODUCTION	
1.1 A Promising Future with High Altitude Platforms	1
1.2 Adaptive Antenna Arrays at the HAP Base Station	3
1.3 Thesis Plan	4
2 HIGH ALTITUDE PLATFORMS FOR MOBILE RADIO COMMUNICATION	ıs
2.1 Introduction	6
2.2 Concept of Cellular Communications	7
2.3 First-Generation Cellular Systems	8
2.4 Second-Generation Cellular Systems	9
2.5 Third-Generation Systems	10
2.6 Mobile-Satellite Communications System	11
2.7 High Altitude Platforms (HAPs) Solution	
2 8 HAP Evolution and Prototypes	15
2.8.1 Balloons	15
2.8.2 Airship HAPs	16
2.8.3 Aeroplane HAPs	18
2.8.4 Other HAP Configurations	2 0
2.9 HAP Communications Applications	21
2.9.1 Wireless Broadband Fixed Networks and Cellular	
Mobile Communications Applications	23
2.9.2 Rapid Communications System Deployment Applications	24
2.9.3 Military Communications	24
2.10 Advantages of HAP Communications	25
2.11 Some Critical Factors and Challenges	26
3 ADAPTIVE ARRAYS AND BEAMFORMING	
3.1 Introduction	30

3.2	2 Basics of Mobile Radio Propagation	30
	3.2.1 Fading Channels	31
	3.2.2 Doppler Spread	31
	3.2.3 Delay Spread	32
3.3	Narrowband Signals	33
3.4	Adaptive Antenna System	
3.5	Uniform Linear One-Dimensional Array	36
3.6	Direction-Of-Arrival Based Beamforming	38
	3.6.1 Conventional Beamforming (Phased Arrays)	
	3.6.2 Interference Canceling with Null-Steering Beamforms	er41
3.7	7 Optimal Beamformer	47
3.8	3 Adaptive Beamforming	49
	3.8.1 Sample Matrix Inversion (SMI) Algorithm	49
	3.8.2 Least Mean Square (LMS) Algorithm	50
3.9	Performance Improvement with Adaptive Arrays	56
4	PERFORMANCE OF HAP MOBILE COMMUNICATIONS WITH	ANTENNA ARRAYS
	PERFORMANCE OF HAP MOBILE COMMUNICATIONS WITH A	
4,1		60
4.1 4.2	Introduction	60
4.1 4.2	Introduction	60 61
4.1 4.2	Introduction Planar Arrays Steering Vector	60 61 67
4.1 4.2	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth 4.3.3 Array Size	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth 4.3.3 Array Size Cell Geometry and Radio Coverage Parameters	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth 4.3.3 Array Size Cell Geometry and Radio Coverage Parameters 4.4.1 Cell Boundary and Area	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth 4.3.3 Array Size Cell Geometry and Radio Coverage Parameters 4.4.1 Cell Boundary and Area 4.4.2 Cell Elevation Angles	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth 4.3.3 Array Size Cell Geometry and Radio Coverage Parameters 4.4.1 Cell Boundary and Area 4.4.2 Cell Elevation Angles 4.4.3 Total Coverage Radius and Area	
4.1 4.2 4.3	Introduction Planar Arrays Steering Vector Conventional Beamforming 4.3.1 Array Sensitivity and Power Pattern 4.3.2 Beamwidth 4.3.3 Array Size Cell Geometry and Radio Coverage Parameters 4.4.1 Cell Boundary and Area 4.4.2 Cell Elevation Angles 4.4.3 Total Coverage Radius and Area Power Distribution and Dynamics	

5 SWITCHED-BEAM HAP TECHNIQUES FOR MACROCELLULAR NEWLY DEVELOPED REGIONS

5.1 Introduction	
5.2 The Basic Switched-Beam System	90
5.3 Switched-Beam Techniques	92
5.3.1 Fixed Spot-Beam Antennas Technique	92
5.3.2 Variable Beam-Pattern Antenna Array Technique	9:
5.3.3 Single Scanning Beam Technique	94
5.3.4 Beam Splitting Approach	95
5.4 Performance Measures and Comparison	91
6 A NOVEL CELLULAR STRUCTURE FOR HAP MOBILE COMMUNIC	:ATIONS
6.1 Introduction	101
6.2 Attitude Instability Effects on HAP Performance	102
6.2.1 Cell Boundary Motion due to Rotational Shift	102
6.2.2 Instability Initiated Handover	105
6.2.3 Location Updating	107
6.3 A Novel Coverage Solution	108
6.4 Scanning Multi-Beam Approach	109
6.4.1 Geometry of The Ring-Shaped Cell	110
6.4.2 The Proposed Multi-Beam Scanning Method	113
6.4.3 Beam Visiting Time and Scanning Rate	115
6.4.4 Number of Scanning Beams within a Ring Cell	118
6.5 Performance Improvement with Ring Cells	119
6.5.1 Power Consumption	
6.5.2 Handover Algorithms and Rate	119
6.5.3 Location Updating Traffic.	120
6.5.4 Teletraffic Balancing	120
7 CONCLUSION AND FUTURE WORK	123
DEFENENCES	125

LIST OF FIGURES

Fig. 2.1	Wide area coverage for traditional mobile radio	7
Fig. 2.2	Cellular mobile radio with frequency reuse concept	8
Fig. 2.3	Wind speed profile with height. (Source: NASA)	1
Fig. 2.4	Basic airship HAP Configuration	17
Fig 2.5	Helios AeroVironment's craft has a wingspan of 75 m and aims to oper	ate
	up at 100000 feet under solar power	19
Fig. 2.6	HALO Proteus aircraft. (Courtesy of Angel Technologies Corp.)	20
Fig. 2.7	Predator, a military UAV (Courtesy of General Atomics Aeronautical	
	Systems Inc.)	21
Fig. 2.8	HAP communications scenario	22
Fig. 3.1	Mobile radio environment and multipath signals	32
Fig. 3,2	Adaptive beamformer	35
Fig. 3.3	Array configurations: a) Linear, b) Circular, c) Two-dimensional, and	
	d) Three-dimensional array	35
Fig. 3.4	Uniform one-dimensional array	37
Fig. 3.5	Array radiation pattern for different dimensions and inter-element	
	separation	40
Fig. 3.6	Interference cancellation by an adaptive array	42
Fig. 3.7	Radiation pattern (array factor) for nulling an interference at 30°	43
Fig. 3.8	Receiving two signals utilizing the same frequency	44
Fig. 3.9	Array sensitivity patterns for two signals utilizing the same frequency .	44
Fig. 3.10	The pattern of the array utilizing the weight vector in Eq. (3.37)	48
Fig. 3.11	LMS Adaptive beamformer	51
Fig. 3.12	LMS beamformer for large interferers canceling	54
Fig. 3.13	Learning curve for the beamformer depicted in Fig. 3.12	55
Fig. 3.14	Power Pattern for the LMS beamformer depicted in Fig. 3.12	55
Fig. 4.1	Scattering Model for HAP base station	61
Fig 42	Two-dimensional array of My Nelements and lies in the y-y plane	62

CONTENTS

Fig. 4.3	Two-dimensional beamformer
Fig. 4.4	Normalized array factor for 10 x 10 array with the main lobe oriented
	toward the broadside direction
Fig. 4.5	Normalized array factor for 10 x 10 array with a main lobe oriented
	toward (θ_o, ϕ_o)
Fig. 4.6	BW_{θ} in degrees versus number of elements at different beam orientation
	angle θ _a
Fig. 4.7	BW_{ϕ} in degrees versus number of elements at different beam orientation
	angle θ_o
Fig. 4.8	Array area versus number of array elements at different carrier
	frequencies
Fig. 4.9	HAP cell footprint74
Fig. 4.10	Cell central angle versus beam direction θ_v
Fig. 4.11	Cell minor axis versus beam direction θ_o at different array dimensions76
Fig. 4.12	Cell major axis versus beam direction θ_{σ} at different array dimensions76
Fig. 4.13	Cell-area versus beam direction θ_a at different array dimensions78
Fig. 4.14	Definition of cell elevation angles78
Fig. 4.15	The upper elevation angle β in degrees versus θ_o at different array
	dimensions 80
Fig. 4.16	The lower elevation angle α in degrees versus θ_{σ} at different array
	dimensions80
Fig. 4.18	Total coverage radius in km versus θ_{σ} at different array dimensions82
Fig. 4.19	Total coverage area in square km versus θ_σ at different array
	dimensions 82
Fig. 4.20	Power profile function for 10 x 10 array versus θ_o
Fig. 4.21	Power profile function for six contiguous
	cells versus beam orientation θ at $\phi = 0^{\circ}$
Fig. 4.22	Cellular system utilizing 61 beams to cover an area of 40 km diameter88

Fig. 5.1	General block diagram of switched-beam system	.91
Fig. 5.2	The fixed spot-beam-pattern antennas switched-beam system	93
Fig. 5.3	Switched-beam antenna system based on beamformer and antenna	
	агтау	94
Fig. 5.4	Switched-beam antenna system based on scanning antenna array	. 95
Fig. 5.5	Beam-splitting for user acquisition	. 96
Fig. 5.6	A user moving toward an area covered by higher layer coverage beam	.97
Fig. 5.7	Flow chart of the beam splitting approach	98
Fig. 6.1	Attitude instabilities of the HAP and its effect on the coverage	103
Fig. 6.2	Rotation of HAP station and its effect on the radio coverage	104
Fig. 6.3	Effect of rotation by 10° of the HAP station on the cellular radio	
	coverage	106
Fig. 6.4	The normalized number of handover users as a function of the rotation	
	angle ($\Delta \varphi$ in Deg.) for different cells (i.e. at different values of θ_{φ} in	
	Deg.) formed by 10 x 10 array	801
Fig.6,5	A Novel cellular structure for airborne HAP systems	09
Fig.6.6	Geometry of the ring cell formed by scanning operation	11
Fig. 6.7	Ring width in km versus the number of elements at different ring	
	directions	112
Fig. 6.8	Ring area in km ² versus the number of elements at different ring	
	directions	113
Fig. 6.9	The normalized radiation pattern of five beams formed by a single	
	weight vector.	115
Fig. 6.10	The geometry of the scanning beam	17
Fig. 6.11	The ground angle (ϕ_g in Deg.) versus beam orientation (θ_o in Deg.)	
	at different number of array elements	17
Fig. 6.12	Different scenarios for teletraffic unbalance and the ways for rebalance	
	utilizing adaptive antenna arrays with the ring-shaped cells mobile	
	communications system 1	22

LIST OF TABLES

Table 2.1 Characteristics of some Mobile Satellite Services	13
Table 2.2 Comparison between Terrestrial, Satellite and HAP communicat	ions 14
Table 3.1 Typical delay, direction of arrival spread and Doppler spread	33
Table 5.1 Comparison between different switched-beam HAP techniques	100

CHAPTER 1 INTRODUCTION

CHAPTER 1

INTRODUCTION

The demand for mobile communications services is growing at an explosive rate with the anticipation to provide any one, anywhere, and at anytime with services at low cost, high quality, high data rates supporting multimedia, with little mobile handset. These demands will put the system operators and researchers in a challenge with the system resources in digging for solutions for increased capacity demands at an affordable cost. Mobile communications faced evolutionary path starting with firstgeneration analog systems, second-generation digital system, and recently the way to apply third-generation system. All the technology improvements aimed the above demands. The last decade has a great research activity on the application of antenna arrays at the base stations. This approach named smart antenna technology and has a great effect on the system performance. Many studies [1]-[6] indicate the feasibility of antenna arrays in mobile radio communications indicating the improvements in performance as it is capable of reducing the cochannel interference level, reducing the cluster size, tracking mobiles for handover reduction and others that will be discussed in detail later. But there are more needed requirements such as flexibility in system design, reconfiguration, adaptability for teletraffic demands and cost effective deployment, which form a great impact especially with the conventional terrestrial systems. Mobile satellite communications although covering large area, it offers a limited solution and suffers from several problems such as Doppler spread, complicated handover schemes, limited capacity, and extraordinary system cost.

1.1 A Promising Future with High Altitude Platforms

Recently, the idea of high altitude platforms (HAP) communications system [7] has a great interest especially for mobile and wireless data communications. Since 1992, un-manned aerial platforms have been proposed, where Steele [8] (Royal

Society meeting in London) proposed the use of stationary stratospheric platforms to handle teletraffic hotspots and peaks saying, "The Platforms will be tethered to the earth and located up to 30 km in height and placed between the aircraft flying lanes. Barely visible from earth they will be able to deliver many services. They will held on station by power conveyed to them via their tie-lines, and these lines will also house the fibers that convey the teletraffic with the network. Alternatively these platforms could be untethered, hovering, and therefore capable of being rapidly re-deployed. The hovering platforms will be able to track 'solitons of the teletraffic', rather than force the task on the terrestrial networks. For example, the platforms could handle the teletraffic from high-speed trains, highways, aircraft and ships. They can be rapidly deployed when disasters occur, for example, the rapid provision of communications to a city, which has been devastated by an carthquake" and latter the application of aerial platforms for cellular communications in [9].

The platforms consist of multi-layer skin airship having buoyant helium-filled cells, a station-keeping system, solar panels for daytime power supply, and regenerative fuel cells for nighttime. Station-keeping with the new technology of corona ion engines make these platforms to be practically available as well as global positioning system (GPS) for accurate positioning and ultra-thin fabric hulls for long duration buoyancy [10]. The HAPs are stationary therefore, no Doppler frequency shift results as in low-earth-orbit satellites. The HAP communications is basically a line-of-sight as it is used with higher elevation angles. Due to the lower altitudes (few kilometers to 70 km high), the path loss is low and is similar to that of conventional macrocells.

Worldwide regulatory approval for the use of stratospheric platforms was granted by the International Telecommunications Union in November 1997 and by the U.S. Federal Communications Commission earlier that year. Many current systems employ and designing to apply HAPs in mobile communications and wireless networks such as SkyStation International Inc.[11], which announced the starting to deploy its global