

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

AERODYNAMIC DESIGN OPTIMIZATION OF SMALL WIND TURBINE BLADES

By

Karim Sayed Abdelwahed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Mechanical Power Engineering

AERODYNAMIC DESIGN OPTIMIZATION OF SMALL WIND TURBINE BLADES

By Karim Sayed Abdelwahed Ahmed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Mechanical Power Engineering

Under the Supervision of

Prof. Dr. Ahmed Ibrahim Abd El-Rahman

Professor of Mechanical Power Engineering Mechanical Power Engineering Department Faculty of Engineering, Cairo University

AERODYNAMIC DESIGN OPTIMIZATION OF SMALL WIND TURBINE BLADES

By **Karim Sayed Abdelwahed Ahmed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

Mechanical Power Engineering

Approved by the Examining Committee:

Prof. Dr. Ahmed Ibrahim Abd El-Rahman, Thesis Main Advisor

Prof. Dr. Atef Omar Sherif, Internal Examiner

Prof. Dr. Mohamed Amr Serag-Eldin, External Examiner

Professor of Mechanical Engineering

Faculty of Engineering, American University in Cairo

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 **Engineer's Name:** Karim Sayed Abdelwahed Ahmed

Date of Birth: 10/10/1993 **Nationality:** Egyptian

E-mail: Karim.sa.ahmed@cu.edu.eg

Phone: +201012674956

Address: Abraj Alkhalig, Albahr alazam st, Giza.

Registration Date: 01/03/2018 **Awarding Date:**/ 2021 **Degree:** Master of Science

Department: Mechanical Power Engineering

Supervisors:

Prof. Ahmed Ibrahim Abd El-Rahman

Examiners:

Prof. Ahmed Ibrahim Abd El-Rahman (Thesis main advisor)
Prof. Atef Omar Sherif (Internal examiner)
Prof. Mohamed Amr Serag-Eldin (External examiner)

Professor of Mechanical Engineering

Faculty of Engineering, American University in Cairo

Title of Thesis:

Aerodynamic Design Optimization of Small Wind Turbine Blades

Key Words:

Airfoil Optimization; Wind Turbines; Genetic Algorithm; XFOIL; CFD

Summary:

A particular shape optimization study of the standard SG6043 airfoil that applies the genetic algorithm is reported to find the maximum lift-to-drag ratio. The operating angle of attack is considered as an optimization parameter in four scenarios. This is followed by a CFD analysis using $\gamma - Re_{\theta}$ SST $k - \omega$ transition model to further validate the numerical model in addition to experimental work. An optimum rotor design is then implemented using the optimized airfoils to evaluate the impact of the improved lift-to-drag ratio on the power coefficient and annual energy production of small wind turbines.

Disclaimer

I hereby declare that this thesis is my own original work and has not been submitted before to any institution for assessment purposes. I have acknowledged all sources used and have cited these in the reference section.

Name: Karim Sayed Abdelwahed Ahmed Date: 28 / 10 / 2021

Signature:

Acknowledgements

I would like to thank Almighty God for all his gifts. I would like to thank my family for all their love and support. I would like to express my gratitude to all my teachers and professors. I would like to thank my supervisor, Dr. Ahmed Ibrahim for enlightening me with such a brilliant idea for my thesis and introducing me to the fascinating world of optimization. I would like to thank him for his supervision and his continuous support since my undergraduate studies.

Table of Contents

Disclaimer	i
Acknowledgements	ii
Table of Contents	iv
List of Tables	vi
List of Figures	vii
Nomenclature	X
Abstract	xiv
Chapter 1: Background and Previous Work	1
1.1 Introduction	1
1.2 Optimization Studies	5
1.2.1. Airfoil Optimization	5
1.2.2. Blade Optimization	7
1.3 Scope of this Thesis	8
Chapter 2: Optimization Method	11
2.1 Airfoil Parameterization	11
2.2 Genetic Algorithm	15
2.3 XFOIL Computational Model	19
2.4 Shape Optimization of SG6043 Airfoil	24
Chapter 3: Optimization Results	27
3.1 Optimum Airfoil Characteristics	27
3.2 Rated Characteristics	30
3.3 Laminar Separation Bubble	31
Chapter 4: CFD Analysis	35
4.1 Governing Equations	35
4.2 Numerical Model Setup	36
4.3 Model Validation	39
4.4 Optimum Airfoil Results	43
4.4.1. Average Wind Speed	43
4.4.2. Rated Wind Speed	47

Chapter 5: Wind Tunnel Measurements	51
Chapter 6: Optimum Rotor Design	59
6.1 Annual Energy Production	61
6.2 Structural Analysis	63
Chapter 7: Conclusions and Recommendations	67
7.1 Summary and Conclusion	67
7.2 Recommendation for Future Research	67
References	69
Appendix A: Matlab Code for Airfoil Optimization	73
Appendix B: Matlab Code for Optimum Rotor Design	93
Appendix C: Matlab Code for AEP Evaluation	95
Appendix D: Maltab Code for Structural Analysis	101
Appendix E: Airfoil Profiles and Data Points	107
Appendix F: Optimum Rotors Geometry	113

List of Tables

Table 2.1: Geometric representation and optimization parameters for all Scenarios24
Table 2.2: XFOIL input parameters
Table 3.1: Aerodynamics performance of the optimum profiles at Re = 59,31528
Table 5.1: Wind tunnel measurements
Table 6.1: Annual energy production and percentage improvement for optimum rotors
Table 6.2:Section properties and maximum normal stress for each scenario65
Table 2.1: Geometric representation and optimization parameters for all Scenarios24
Table 2.2: XFOIL input parameters
Table 3.1: Aerodynamics performance of the optimum profiles at Re = 59,31528
Table 5.1: Wind tunnel measurements
Table 6.1: Annual energy production and percentage improvement for optimum rotors
Table 6.2:Section properties and maximum normal stress for each scenario65

List of Figures

Figure 1.1: Wind energy development in Egypt [2]2
Figure 1.2: Aerodynamics of the sail used in old fashioned wind mills. The tangential force is responsible for generating torque.
Figure 1.3: Laminar separation bubble, reproduced from [15]4
Figure 1.4: Pressure plateau resulting from the laminar separation bubble4
Figure 2.1: Workflow of the optimization process
Figure 2.2: Geometry parameterization of SG6043 using 6 th order Bèzier curves14
Figure 2.3: Original SG6043 profile Vs. reconstructed shape
Figure 2.4: Lift-to-drag ratio Vs. Angle of attack for original and reconstructed SG6043 as predicted by XFOIL at Re = 59,315
Figure 2.5: Roulette wheel selection. The individual with higher fitness value has a higher selection probability
Figure 2.6: Crossover of a pair of selected candidates to produce a pair of new individuals. Each involved pair of design variables in SBX are connected by an arrow
Figure 2.7: Airfoil and wake paneling in XFOIL, reproduced from Drela [23]. Vortex and source strengths are represented by γ at the panel node (dots) and σ at the panel center, respectively
Figure 2.8: XFOIL predictions for SG6043 lift coefficient Vs. measured values [53]. Re = 99,681, and XFOIL <i>Ncrit</i> =1121
Figure 2.9: XFOIL predictions for SG6043 drag coefficient Vs. measured values [53]. Re = 99,681, and XFOIL <i>Ncrit</i> =1121
Figure 2.10: XFOIL predictions for SG6043 lift-to-drag ratio Vs. measured values [53]. Re = 99,681, and XFOIL <i>Ncrit</i> =11
Figure 2.11: XFOIL predictions for SD7032 lift coefficient Vs. measured values [54]. Re = 60,900, and XFOIL <i>Ncrit</i> =11
Figure 2.12: XFOIL predictions for SD7032 drag coefficient Vs. measured values [54]. Re = 60,900, and XFOIL <i>Ncrit</i> =1123
Figure 2.13: XFOIL predictions for SD7032 lift-to-drag ratio Vs. measured values [54]. Re = 60,900, and XFOIL <i>Ncrit</i> =11
Figure 3.1: The variations of the predicted L/D profiles with the angle of attack α at Re = 59,315 for the four scenarios are plotted in comparison with the base profile27
Figure 3.2: Shapes of the optimized airfoil sections in comparison with the original configuration
Figure 3.3: The lift characteristics at Re = 59,315 of the four scenarios in comparison with the original lift profile.

Figure 3.4: The drag characteristics at Re = 59,315 of the four scenarios in comparison with the original drag profile
Figure 3.5: Lift coefficient for different scenarios as predicted by XFOIL at Re $=$ 138,000, and $Ncrit = 11$ 30
Figure 3.6: Lift-to-drag ratio for different scenarios as predicted by XFOIL at Re $=$ 138,000, and $Ncrit = 11$ 31
Figure 3.7: Skin friction coefficient distribution over the suction side for scenario C and SG6043 as predicted by XFOIL at Re = 59315 and $\alpha = 0^{\circ}$ and $Ncrit = 11$ 32
Figure 3.8: Pressure coefficient distribution over the suction side for scenario C and SG6043 as predicted by XFOIL at Re = 59315 and $\alpha = 0^{\circ}$ with $Ncrit = 1132$
Figure 3.9: Skin friction coefficient distribution over the suction side for scenario C and SG6043 as predicted by XFOIL at Re = 59315 and α = 5.5° and $Ncrit$ = 1133
Figure 3.10: Pressure coefficient distribution over the suction side for scenario \mathbf{C} and SG6043 as predicted by XFOIL at Re = 59315 and α = 5.5° with $Ncrit$ = 1133
Figure 3.11: Skin friction coefficient distribution over the suction side for scenario C and SG6043 as predicted by XFOIL at Re = 59315 and α = 8.3° and $Ncrit$ = 1134
Figure 3.12: Pressure coefficient distribution over the suction side for scenario C and SG6043 as predicted by XFOIL at Re = 59315 and α = 8.3° with $Ncrit$ = 1134
Figure 4.1: Computational mesh for SD7003
Figure 4.2: A closer view of the SD7003 airfoil
Figure 4.3: Lift coefficient as a function of the cell count
Figure 4.4: Drag coefficient as a function of the cell count
Figure 4.5: Lift coefficient Vs. angle of attack for SD7003 at Re = 60,00040
Figure 4.6: Drag coefficient Vs. angle of attack for SD7003 at Re = 60,00040
Figure 4.7: Lift-to-drag ratio Vs. angle of attack for SD7003 at Re = 6000041
Figure 4.8: Pressure coefficient variation on suction side with chord length for SD7003 at Re = 60000 and $\alpha = 4^{\circ}$
Figure 4.9: Skin friction coefficient variation on suction side with chord length for SD7003 at Re = 60000 and $\alpha = 4^{\circ}$
Figure 4.10: Pressure coefficient variation on suction side with chord length for SD7003 at Re = 60000 and $\alpha = 8^{\circ}$
Figure 4.11: Skin friction coefficient variation on suction side with chord length for SD7003 at Re = 60000 and $\alpha = 8^{\circ}$
Figure 4.12: Lift coefficient Vs. angle of attack for Scenario C at Re=59,31544
Figure 4.13: Drag coefficient Vs. angle of attack for Scenario C at Re=59,31544
Figure 4.14: Lift-to-drag ratio Vs. angle of attack for Scenario C at Re = 59,31545

Figure 4.15: Pressure coefficient variation on suction side with chord length for Scenario C at Re = 59,315. And $\alpha = 4^{\circ}$
Figure 4.16: Skin friction coefficient variation on suction side with chord length for Scenario C at Re = 59,315. And $\alpha = 4^{\circ}$.
Figure 4.17: Pressure coefficient variation on suction side with chord length for Scenario C at Re = 59,315. And α = 5.5°
Figure 4.18: Skin friction coefficient variation on suction side with chord length for Scenario C at Re = 59,315. And α = 5.5°
Figure 4.19: Lift coefficient Vs. angle of attack for Scenario C at Re=138,00048
Figure 4.20: Drag coefficient Vs. angle of attack for Scenario C at Re=138,00048
Figure 4.21: Lift-to-drag ratio Vs. angle of attack for Scenario C at Re = 138,00049
Figure 4.22: Pressure coefficient variation on suction side with chord length for Scenario C at Re = 138,000. And $\alpha = 4^{\circ}$
Figure 4.23: Skin friction coefficient variation on suction side with chord length for Scenario C at Re = 138,000. And $\alpha = 4^{\circ}$.
Figure 5.1: The manufactured Scenario (C) airfoil model using 3D printing51
Figure 5.2: The wind tunnel facility at the Faculty of Engineering at Cairo University 52
Figure 5.3: Calibration curve for wind tunnel fan frequency
Figure 5.4: LVDT dynamometer used for measuring the lift and drag forces53
Figure 5.5: Dynamometer lift calibration with standard weights
Figure 5.6: Dynamometer drag calibration with standard weights
Figure 5.7: Experimental lift coefficient Vs XFOIL prediction at Re = 75,53355
Figure 5.8: Experimental drag coefficient Vs XFOIL prediction at Re = 75,55355
Figure 5.9: Experimental lift-to-drag ratio Vs XFOIL prediction at Re = 75,55356
Figure 5.10: Experimental lift coefficient Vs XFOIL prediction at Re = 83,26656
Figure 5.11: Experimental drag coefficient Vs XFOIL prediction at Re = 83,26657
Figure 5.12: Experimental lift-to-drag ratio Vs XFOIL prediction at Re = 83,26657
Figure 6.1: Optimum power coefficient variation with tip speed ratio
Figure 6.2: A flowchart illustrating the iterative process for the estimation of the CP and the AEP for a wind speed range from 3 to 10 m/s for each of the four scenarios. Here, ϕ represents the relative flow angle of the inlet relative velocity W
Figure 6.3: Power Vs. wind speed for variable speed operation
Figure 6.4: Power coefficient Vs. wind speed for variable speed operation63
Figure 6.5: Aerodynamic loads acting on a wind turbine blade section
Figure 6.6: Maximum combines stress variation with normalized blade radius66