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Summary: 

 

A particular shape optimization study of the standard SG6043 airfoil that applies the 

genetic algorithm is reported to find the maximum lift-to-drag ratio. The operating 

angle of attack is considered as an optimization parameter in four scenarios. This is 

followed by a CFD analysis using 𝛾 − 𝑅𝑒𝜃 SST 𝑘 − 𝜔 transition model to further 

validate the numerical model in addition to experimental work. An optimum rotor 

design is then implemented using the optimized airfoils to evaluate the impact of the 

improved lift-to-drag ratio on the power coefficient and annual energy production of 

small wind turbines. 
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