

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

GENETICAL AND PHYSIOLOGICAL ANALYSIS OF HEAT TOLERANCE IN BREAD WHEAT

By

JOSEPH ELIA NASIEF SHENODA

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Assiut Univ., 2005M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2012

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences

(Genetics)

Department of Genetics

Faculty of Agriculture

Cairo University

EGYPT

2021

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

GENETICAL AND PHYSIOLOGICAL ANALYSIS OF HEAT TOLERANCE IN BREAD WHEAT

Ph.D. Thesis

In

Agric. Sci. (Genetics)

By

JOSEPH ELIA NASIEF SHENODA

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Assiut Univ., 2005
M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2012
APPROVAL COMMITTE

Dr. SAID ABD-EL-SALAM HUSSEIN DORA...

Professor of Genetics, Fac. Agric., Kafrelsheikh University

Dr. SAMIR MOHAMED MOSTAFA...

Professor of Genetics, Fac. Agric., Cairo University

Dr. SALAH EL DIN SAYED EL-ASSAL...

Professor of Genetics, Fac. Agric., Cairo University

Dr. MONA HASHEM AHMED HUSSEIN...

Professor of Genetics, Fac. Agric., Cairo University

Date: 16/12/2021

SUPERVISION SHEET

GENETICAL AND PHYSIOLOGICAL ANALYSIS OF HEAT TOLERANCE IN BREAD WHEAT

Ph.D. Thesis

In

Agricultural Sci. (Genetics)

By

JOSEPH ELIA NASIEF SHENODA

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Assiut Univ., 2005M.Sc. Agric. Sci. (Genetics), Fac. Agric., Cairo Univ., 2012

SUPERVISION COMMITTEE

Dr. MONA HASHEM AHMED HUSSEIN

Professor of Genetics, Fac. Agric., Cairo University

Dr. SALAH EL DIN SAYED EL ASSAL

Professor of Genetics, Fac. Agric., Cairo University

Dr. AIDA ALFONSE RIZKALLA

Researcher Professor of Plant Genetics, National Research Center

Name of Candidate: Joseph Elia Nasief Shenoda Degree: Ph.D.

Title of Thesis: Genetical and Physiological Analysis of Heat Tolerance in Bread Wheat.

Supervisors: Dr. Mona Hashem Ahmed Hussein

Dr. Salah EL Din Sayed EL Assal

Dr. Aida Alfonse Rezkalla

Department: Genetics

Date: 16 /12 /2021

ABSTRACT

Frequent episodes of heat threaten sustainable agriculture in Egypt. Here, twenty spring wheat genotypes were exposed to heat stress under field conditions for screening heat tolerance. Stress environments were simulated by delaying the sowing date by 53 and 58 days than the normal environments for two successive seasons. Eight phenotypic parameters measured to evaluate genotype tolerance. Mean performance, reduction percentage/trait, and heat susceptibility index were calculated. Additionally, the pollen grains viability during spike emergence and the germinability of produced grains were investigated. The molecular tolerance mechanism was studied by investigating the expression of nine heat-responsive genes. Results demonstrated: (1) A significant reduction was observed in all studied traits compared to the non-stress environment, (2) the overall yield reduction, based on grain yield/m², was 40.17, 41.19% in the first and second seasons, respectively, and the most tolerant genotypes were Misr2, Sids1, Giza171 and Line9, (3) limited impact of heat was detected on pollen grains viability and germinability, and (4) grain yield as a selection criterion for heat stress remains the most reliable yardstick. Thereafter, the most tolerant (Misr2) and one of the most susceptible (Line4) genotypes have been chosen to study the genetical and physiological mechanisms of heat tolerance. The most tolerant and the most susceptible genotypes were sown in the third season, using the same procedure to stimulate heat stress. Samples were collected at 7 days after anthesis (DAA). Physiological studies revealed changes in all studied physiological traits in response to heat stress. The tolerant genotype showed increases in photosynthetic pigments, proline, total soluble sugars and all studied antioxidant enzymes, comparing with susceptible genotype. For the first time, we measured the peroxisome abundance under stress condition relative to normal one, in the most tolerant and most susceptible genotypes and found that the peroxisome abundance was increased under stress condition, especially in the tolerant genotype. The molecular data revealed changes in the gene products in all studied heat shock proteins (HSP70, HSP90 and HSP101), genes encoded the antioxidant enzymes (SOD and CAT) and some of peroxisomal proliferation genes due to heat stress. The tolerant genotype (Misr2) could enhance the transcription levels of several genes (HSP70, HSP90, HSP101, CAT and PEX11.4), which is considered as a main tolerance mechanism. On the other hand, the susceptible genotype also enhanced the transcription levels in HSP70 and CAT genes, but in a lower rate, as well as SOD and DRP5B, comparing with the normal environment. It could be concluded that the tolerant genotype possesses different ways to withstand heat stress; such as increasing the expression of some heat-responsive genes, increasing in the production of osmoprotectants, increasing in the activities of antioxidant enzymes defense system and more peroxisome abundance which allowed Misr2 to tolerate the negative impact of heat stress. While the susceptible genotype (Line4) showed some of these defense mechanisms but to a lesser extent which finally visualized in low yield and bad performance under stress conditions.

Keywords: Bread wheat, Heat stress, Field evaluation, Reproductive stage, Heat susceptibility index, Gene expression, Physiological analysis, peroxisomes.

DEDICATION

I dedicate this work to my dear mother's soal who left before ending it, as she was a source of strength and constant encouragement. I would like to take this opportunity to acknowledge her support lovely offered during my life.

Acknowledgements

After thanking **my God**, who has blessed me with many blessings from the beginning of my life. I would like to take this opportunity to acknowledge people who helped me through PhD and contributed in this work.

I would like to express my sincerest gratitude to my principle supervisor **Prof. Or. Mona Hussien**, for providing me the opportunity to do this work and for her excellent guidance encouragement, and patience during the entire study. Also, I would like to thank **Prof. Or. Salah El-Assal**, for his enduring patience in working with me on many aspects of this research. His knowledge, insight and close attention to details helped me immensely during my research and also in preparing this manuscript.

I would like to acknowledge the support of my supervisors and especially **Prof. Dr. Aida Alfonse Rizkalla**, who along with her invaluable guidance on how to conduct research, has also taught me the importance of positive thinking and without her help I am sure I never would have finished this thesis. **Dr. Marwa Sanad**, is the internal supervisor at the National Research Centre. I would like to thank her for the technical guidance and moral support. She was always willing to help me and she helped me learn and implement various aspects of the laboratory experiments, statistical analysis, and writing skills.

Special thanks to **Dr. Mervat Shamoon**, for her help in physiological measurements, **Dr. Rania Ali**, for her help in pollen grains viability experiment.

Special thanks for the **National Research Center (NRC)** for supporting this work. Thanks to my dad and brothers, for inspiring and encouraging me to pursue my Ph.D. I am very much grateful to them for their inspiration, love, and encouragement.

LIST OF ABBREVIATIONS

ROS Reactive Oxygen Species

HRI Heat Response Index

STI Stress Tolerance Index

HSI Heat Susceptibility Index

SAGs/SAPs Stress-Associated Genes/ Proteins

HSPs Heat Shock Proteins

CAT Catalase

SOD Superoxide Dismutase

HS Heat Stress

DAA Days After Anthesis

DAS Days After Sowing

MAS Marker Assisted Selection

CFL Chlorophyll Florescence

Chl Chlorophyll Content

S1 Season 1

Season 2

NE Normal Environment

SE Stress Environment

EMA Egyptian Meteorological Authority

PCA Principle Component Analysis

DTT Dithiothreitol

TSS Total Soluble Sugars

MDA Malondialdehyde

TCA Trichloroacetic Acid

TBA Thiobarbituric Acid

POX Peroxidase

DTH Days to Heading

DTM Days to Maturity

GFD Grain Filling Duration

PH Plant Height

SL Spike Length

SNO Number of Spikes/m²

GY/m² Grain Yield/m²

PEX Peroxin

FIS Mitochondrial Fission 1

DRP Dynamin-Related Protein

CONTENTS

INTRODUCTION	1
REVIEW OF LITERATUR	6
1. Heat stress.	6
2. Common wheat	7
3. Heat stress constrains whea production	8
4. Effects of heat stress on wheat plants	9
a. Morphological alterations caused by heat stress	9
b. Physiological alterations caused by heat stress	14
c. Molecular alterations caused by heat stress	19
d. Effect of heat stress on fertility	21
5. Traits, parameters and indices used for heat stress evaluation	
6. Types of experiments for assessment of heat stress	22 24
tolerance7. Mechanisms of heat tolerance	24 25
8. Peroxisomes as a mechanism of ROS scavenging	27
MATERIALS AND METHODS	31
1. Plant materials	31
2. Evaluation of wheat genotypes for heat stress tolerance	31
a. Experimental design and stress description	31
b. Measurements	32
c. Calculations and statistical analysis	33
d. Pollen grain viability	35

e. Germinability	35
3. Analysis of physiological response in the tolerant and susceptible genotypes	36
a. Plant materials and stress description	36
b. Sampling protocol	30
c. Estimation of photosynthetic pigments	37
d. Estimation of proline content	3'
e. Estimation of total soluble sugars (TSS)	38
f. Estimation of malondialdehyde (MDA) content	38
g. Estimation of total hydrogen peroxide (H2O2)	3
h. Assay of enzymes activities	3
i. Statistical Analysis for physiological data	4
4. Measuring peroxisome abundance	4
a. Extraction of total protein	4
b. Sample preparation	4
c. Measuring	4
d. Standard curve	4
5. Studying the expression of some heat response genes	4
a. RNA extraction	4
b. Estimation of RNA quality and quantity	4
c. Genomic DNA elimination and first strand cDNA synthesis	4
d. Gene expression by qRT-PCR	4
e. Analysis of gene expression data	5
RESULTS AND DISCUSSION	5

1. Evaluation of wheat genotypes for heat stress tolerance	51
a. Meteorological data across the evaluation seasons	51
b. Analysis of variance	52
c. The impact of heat stress	54
d. Pollen grain viability	65
e. Germinability	67
f. Heat susceptibility index (HSI)	69
g. Pairwise correlation among field traits	70
h. Multivariate analyses	73
2. Analysis of physiological response in the tolerant and susceptible genotypes	79
a. Meteorological data in the third season (2017/2018)	79
b. Analysis of variance for physiological traits	81
c. Effects of heat stress on photosynthetic pigments and chlorophyll content	81
d. Effects of heat stress on proline content	86
e. Effects of heat stress on total soluble sugars (TSS).	88
f. Effects of heat stress on malondialdehyde (MDA) content	90
g. Effects of heat stress on total hydrogen peroxide (H ₂ O ₂) content	92
h. Effects of heat stress on antioxidant enzyme activities	93
(1). Superoxide dismutase (SOD)	94
(2). Peroxidase (POX)	95
(3) Catalase (CAT)	96