

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

THE EFFECT OF USING NANOMATERIALS ON THE **DURABILITY OF CONCRETE**

By

Marium Mohamed Fathi Mohamed Mahmoud Eid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

INTERDISCIPLINARY-MASTER OF SCIENCE

in

Advanced Materials and Nano-Materials

THE EFFECT OF USING NANOMATERIALS ON THE DURABILITY OF CONCRETE

By Marium Mohamed Fathi Mohamed Mahmoud Eid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
INTERDISCIPLINARY-MASTER OF SCIENCE

TERDISCIPLINARY-MASTER OF SCIENCE

in

Advanced Materials and Nano-Materials

Under the Supervision of

Prof. Dr. Osama Abd ElGhafour
Hodhod
Zaki

Professor of Properties and Strength of
Materials
Structural Department
Faculty of Engineering, Cairo University

Prof. Dr. El Saaid Ibrahim
Zaki

Professor of Properties and Strength of
Materials
Housing and Building National
Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021

THE EFFECT OF USING NANOMATERIALS ON THE DURABILITY OF CONCRETE

By **Marium Mohamed Fathi Mohamed Mahmoud Eid**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

INTERDISCIPLINARY-MASTER OF SCIENCE

in

Advanced Materials and Nano-Materials

Approved by the Examining Committee
Prof. Dr. Osama Abd El Ghafour Hodhod , Thesis Main Advisor
Prof. Dr. El Saaid Ibrahim Zaki , Advisor Housing and Building National Research Center
Prof. Dr. Ahmed Mahmoud Maher, Internal Examiner
Prof Dr Samir Saad Ihrahim Nassar Eytarnal Eyaminar

Prof. Dr. Samir Saad Ibrahim Nassar, External Examiner Housing and Building National Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2021 Engineer's Name: Marium Mohamed Fathi Mohamed

Mahmoud Eid

Date of Birth: 17/08/1992 **Nationality:** Egyptian

E-mail: mariamfeid@gmail.com

Phone: 01004778996

Address: 14 Hassan El-Emam Street, Nasr City,

Cairo

Registration Date: 1/10/2016 **Awarding Date:**/..........

Degree: (Interdisciplinary-Master of Science) **Department:** Advanced Materials and Nano-Materials

Supervisors:

Prof. Dr. **Osama Hodhohd** Prof. Dr **El Saaid Ibrahim Zaki**

Housing and Building National Reserch Center

Examiners:

Prof Dr. Osama Hodhohd. (Thesis main advisor)

Prof Dr. El Saaid Zaki (advisor)

Housing and Building National Reserch Center
Prof Dr. Ahmed Maher (Internal examiner)
Prof Dr. Samir Saad (External examiner)
Housing and Building National Reserch Center

Title of Thesis:

THE EFFECT OF USING NANOMATERIALS ON THE DURABILITY OF CONCRETE

Kev Words:

Nano materials; Nano Bentonite; Nano Kaoline; Permeability; Scanning Electron Microscope analysis

Summary:

This research aims to study the effect of adding nano-materials on the durability of concrete through a laboratory program. Nano bentonite and nano kaoline were used and a mixture between them as a partial substitute for cement with different ratios and then measuring the properties of concrete that have the most impact on its durability over time, the permeability and resistance to exposure to aggressive media like concentrated sulfuric acid. The results showed that the highest percentage of improvement in most of the properties of concrete was obtained when using a mixture of nano kaoline with nano bentonite at 12% of the weight of cement materials followed by nano bentonite and the optimum percentage is 15%.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mariam Mohamed Fathi Mohamed Mahmoud Eid Date: // Signature:

Dedication

In the loving memory of my beloved Dad **Professor Dr. Fathi Eid** (may his soul rest in peace)

To my amazing Mother **Dr. Samia Emera** who always brighten my life.

Acknowledgement

There are many people whose contributions to this thesis exceed my ability to express my most humble gratitude. The first of those people is my supervisor **Prof. Dr Osama Hodhod** Professor of properties of Material Faculty of Engineering Cairo University, who has cons

tantly supported my research through his excellent mentoring, enthusiasm, knowledge and perseverance to see the best in his students,. I express my sincere gratitude to him for his guidance and friendship that has carved out a dedicated research student out of me. His supervision and valuable advice has immensely helped me to embark upon a path to academic career.

I would also like to express my sincerest gratitude and indebtedness to my supervisor **Prof. Dr. Saaid Ibrahim Zaki Eldeen** Professor of Strength and Testing Materials in Housing and Building National Research Center, for his support, inspiration and encouragement during the most difficult times of this research work. His assuring words and patient counsel kept me on track through the many personal, financial and educational obstacles that hurdled my way forward.

Thanks to **Cairo University**, Faculty of Engineering for providing Laboratories and Library facilities.

I am grateful to **Prof. Dr.Samir Saad**, Head of Electro Mechanical Institute, HBRC for supporting me every step of the way.

I also extend my appreciations to **Prof. Dr. Mohamed Selim** at Department of Chemistry at National Center of Research.

Finally, I thank and express my love to my amazing parents **Prof. Dr. Fathi Eid** (May his soul rest in peace) and Mum **Dr. Samia Emera** for being the architects of my every success. Special thanks to my **siblings Omar, Maha, Mona and Mai** and **my nieces Aliaa and Farida** for being the elixirs of my life.

I thank my family for being my companions through the thick and thin, the stress, hardship and fears that come with tough decisions and long journeys to success that come at the end of every decision.

Table of Contents

LIST OF TABLESVIII
LIST OF FIGURESX
NOMENCLATUREXIII
ABSTRACTXIV
CHAPTER 1: INTRODUCTION1.
1.1. Background1
1.2. Importance of using Bentonite in enhancing durability and Permeability
of concrete
1.3. Importance of using NK in enhancing durability and Permeability of
concrete2
1.4. Mechanism of Sulfate Attack
1.5. Research Objectives
1.7. Research Outlines
CHAPTER 2 : LITERATURE REVIEW5
2.1. Introduction
2.2. Definitions of Nanotechnology5
2.2.1. Role of Nanotechnology in Civil Engineering
2.2.2. Potential of Nanotechnology in concrete Performance
2.3. Nanoparticles7
2.3.1. The main Benefits of Size reduction in Nano Scale
2.4. Concrete8
2.4.1. Definition of Nano Concrete9
2.5. Bentonite9
2.5.1. Location of Bentonite in Egypt
2.5.2. Importance and properties of Bentonite
2.5.3. Preparation of Bentonite Slurry11
2.5.4 Functions and uses of Bentonite Slurry12

2.5.5. Effect of Bentonite on Concrete	12
2.6. kaoline	17
2.6.1. Structure and composition of kaolinite mineral	17
2.6.2. Origins of Kaoline Mineral.	18
2.6.3. The mining and Processing of Kaoline Minerals	19
2.6.4. Production of Nano Kaoline.	19
2.6.5. Kaoline Properties.	20
2.6.6. Uses of Kaoline.	20
2.6.7. The effect of Nano-Kaoline on Concrete	20
2.7. Durability	23
2.7.1. Influence of nanomaterials on Concrete Durability	24
2.7.2. Influence of nanomaterials on Concrete Permeability	26
CHAPTER 3: EXPERMENTAL WORK	29
3.1. Introduction.	29
3.2. Materials.	29
3.2.1. Portland Cement.	29
3.2.2. Fine Aggregate	30
3.2.3. Coarse Aggregates.	31
3.2.4. Water	31
3.2.5. Chemical Admixture.	31
3.2.6. Silica Fume.	32
3.2.7. Bentonite	34
3.2.8. Kaoline	37
3.3. Specimen Preparation and Procedures.	40
3.3.1. Mixes Proportions	40
3.3.1.1. Nanobentonite Concrete Samples	41
3.3.1.2. Hybrid Concrete Samples.	42
3.3.2. Mixing Technique for Nano particles.	43

3.3.3. Mixing, Casting and molding of Concrete Samples	44
3.3.4. Experimental Program	45
3.4. Fresh Concrete Tests.	45
3.5. Hardened Concrete Properties Tests	46
3.5.1. Preparation of Aggressive media	46
3.5.2. Water Permeability Test.	48
3.5.3. Durability of Concrete	49
3.6. Mineralogical Characteristics Tests.	51
3.6.1. Transmission Electron Microscope (TEM)	51
3.6.2. Scanning Electron Microscope (SEM)	53
3.7. Chemical Analysis by X-Ray Fluorescence Spectrometry (XRFS)	54
CHAPTER 4: ANALYSIS AND DISCUSSION OF TEST RESULTS	56
4.1. Introduction.	56
4.2. Effect of Nanobentonite on workability of concrete	56
4.2.1. Effect of hybrid mixture (NB+ NK) on workability	57
4.3. Durability of Concrete	57
4.3.1. Acid Attack Resistance	58
4.3.2. Compressive Strength.	60
4.3.2.1. Normal Curing	60
4.3.2.2. Aggressive Curing.	64
4.3.2.2.1Results of the residual Compressive Strength	64
4.4 Water permeability test results.	69
4.5. Microstructure Analysis	71
4.5.1. Normal Curing SEM	71
4.5.2. Aggressive Curing SEM	74
4.6. Economic feasibility study of using nanomaterials in concrete construction	74
CHAPTER 5: APPLICATION STUDY	81
5.1. Introduction	81
5.2 Rentonita Pila	82

5.2.1. The Execution Method.	82
5.2.2. Pile Walls.	82
5.2.2.1. Contiguous Pile Walls	82
5.2.2.2. Secant Walls	83
5.2.2.3. Tangent Pile Walls.	83
5.3. Hurghada Sewer Network Piles (Application Study)	83
5.3.1. Project Description.	84
5.3.2. Detailed Scope of Work.	84
5.3.3. References and Code of Practice.	84
5.3.4. Design of plug and bentonite Piles.	84
5.4. Construction Procedures	84
5.4.1. Site Leveling and preparation of working Platform	85
5.4.2. Construction of Guide Wall.	85
5.4.3. Execution of Secant Pile Walls using Bored piles drilling rig	86
5.4.4. Excavations around walls	89
5.4.5. Pile Head chipping.	90
5.4.6. Construction of Capping Beam.	90
5.4.7. Installation of Struts.	91
CHAPTER 6: CONCLUSIONS, RECOMMENDATIONS AND FUTU	JRE WORK
6.1. Introduction	92
6.2. Conclusion.	92
6.2.1 General conclusion.	92
6.3. Recommendations.	94
6.4. Future Work	94
REFRENCES	95
APPENDIX A : Superplasticizer Data Sheet	105
APPENDIX B : Chemical Analysis Data Sheet of Silica Fume	100
APPENDIX C: Chemical Analysis Data Sheet of Kaoline	107
APPENDIX D. Chemical Analysis Data Sheet of Rentonite	109

List of Tables

CHAPTER (2)	Page
Table 2.1: Definition of Nanoparticles and materials by various specifications	8
Table 2.2: Locations of Bentonite in Egypt	10
Table 2.3: Chemical Analysis of Bentonite Locations in Egypt	11
CHAPTER (3)	
Table 3.1: Physical Properties of the used OPC.	29
Table 3.2: Mechanical Properties of the used OPC.	29
Table 3.3: Chemical Analysis of the used OPC.	29
Table 3.4: Physical Properties of fine aggregates	30
Table 3.5: Physical and Mechanical Properties of Coarse aggregates	30
Table 3.6: Physical properties of GLENIUM RMC315.	31
Table 3.7: Physical Properties of Silica Fumes	32
Table 3.8: Physical Properties of Bentonite.	33
Table3.9: Chemical Composition of Bentonite (Data Sheet).	33
Table 3.10: Chemical Analysis of Bentonite.	33
Table 3.11: Physical Properties of NK.	36
Table 3.12: Grading of Kaoline %	36
Table3.13: Number of Concrete Samples (NB).	40
Table 3.14: Proportions of concrete samples (NB on weight basis)	40
Table 3.15: Number of hybrid Concrete Samples	41
Table 3.16: Proportions of concrete samples (HB on weight basis).	41
Table3.17: Specifications of water vane motor	42
Table3.18: Experimental Program for adding Nanomaterials.	44
CHAPTER (4)	
Table 4.1: Slump values of different mixes of NB	55
Table 4.2: Slump values of different Hybrid mixes (NB+NK).	56
Table 4.3: Change in Weight of NB mixes with 2% H ₂ SO ₄ attack	57