

بعض الوثائق

الأصلية تالفة

-C-02-502-

SALWA AKL

بالرسالة صفحات

لم ترد بالأصل

SALWA AKL

SYNTHESIS OF SOME SELECTED QUINOXALINE COMPOUNDS OF PHARMACEUTICAL INTEREST

THESIS Presented by B16984

Mostafa Hussein Mohammed

B.Pharm.Sci. (Cairo)

SUBMITTED FOR THE DEGREE OF MASTER
IN
PHARMACEUTICAL SCIENCES
(ORGANIC CHEMISTRY)

Under Supervision of

Prof. Dr. Mohga M. Badran

Professor of Organic Chemistry Faculty of Pharmacy, Cairo University

Dr. Khaled A. M. Abouzid

Lecturer of Organic Chemistry
Faculty of Pharmacy, Ain-Shams University

Faculty of Pharmacy
Cairo University
2001

Approval Sheet

Committee in Charge

Approved:

Prof. Dr. Mohga M. Badran

Faculty of Pharmacy

Cairo University

Mahja Badhen

Prof. Dr. Nargues S. Habib

Faculty of Pharmacy

Alexandria University

Dargues S. Hall-

Prof. Dr. Mervat M. El-Enany

Faculty of Pharmacy

Cairo University

ex Jewet Ulman

Acknowledgement

I would like to express my sincere thanks to **Prof. Dr. Mohga M.**Badran, Professor of Organic Chemistry, Faculty of Pharmacy, Cairo University, who suggested the idea of this research, for her great effort in supervision, sincere encouragement and unlimited continual help that she kindly offered throughout the development of this work.

I am profoundly grateful to Dr. Khaled Abouzid M. Abouzid, Lecturer of Organic Chemistry, Faculty of Pharmacy, Ain-Shams University for his kind supervision, valuable advice and indispensable help during the course of this work.

I would like to express my sincere thanks and gratitude to Dr. Abdel-Hameed A. Abdel-Hameed, Assistant Professor of Microbiology and Immunology, Faculty of Pharmacy, Cairo University for his sincere help and for the facilities provided during the performance of the antimicrobial screening.

To everyone who made this work possible, I am indeed very thankful.

Abstract	i
Introduction	1
* Chemistry of Quinoxalines	2
* Synthesis	2
* Reactions and properties	11
* Biological Activity of Quinoxalines	24
Research Objectives	36
Discussion	43
Experimental	72
Antimicrobial activity	122
References	125
Arabic Summary	

ABSTRACT

Abstract

i

TITLE OF THESIS

Synthesis of Some Selected Quinoxaline Compounds of Pharmaceutical Interest.

NAME OF CANDIDATE

Mostafa Hussein Mohammed

B. Pharm. Sci. (1997)

Faculty of Pharmacy, Cairo University

THESIS SUPERVISED BY:

Prof. Dr. Mohga M. Badran

Professor of Organic Chemistry, Faculty of Pharmacy, Cairo University

Dr. Khaled Abouzid M. Abouzid

Lecturer of Organic Chemistry, Faculty of Pharmacy, Ain-Shams University

A survey covering the methods used for the synthesis of quinoxalines in addition to their reactions is presented. A brief outline on their biological importance is also given.

The thesis involves the preparation of the starting quinoxaline derivatives needed for the preparation of the intermediates and/or final compounds. (Scheme of starting materials)

Treatment of 3-hydrazinoquinoxalin-2(1H)-one (II) with a number of aromatic aldehydes gave 3-(arylidenehydrazino)quinoxalin-2-(1H)-ones (V_{a-h}) which upon cyclization with bromine in acetic acid, afforded the corresponding 1-aryl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-ones (VI_{a-h}). Attempted alkylation of (VI) produced 1-aryl-5-substituted-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-ones (VII_{a-h}). Compound VI_a was treated with α-chloroanilide derivatives (VIII_{a-h}) to afford 5-(arylaminocarbonylmethyl)-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-ones (IX_{a-h}). The latter series was also prepared by condensation of 5-(ethoxycarbonylmethyl)-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (VII_a) with the corresponding aromatic amine.

Furthermore, hydrazinolysis of ester (VII_a) furnished the desired hydrazide (X). Treatment of (X) with different aromatic aldehydes afforded arylidene derivatives (XI_{a-c}). Reaction of hydrazide (X) with 4-nitrobenzoic acid in excess phosphorus oxychloride afforded 5-[5-(4-nitrophenyl)-[1,3,4]oxadiazol-2-ylmethyl]-1-phenyl-[1,2,4]-triazolo[4,3-a]quinoxalin-4(5H)-one (XII). Compound XII was also prepared via oxidative cyclization of the arylidene (XI_a).

Ċ

Treatment of 2-chloro-3-hydrazinoquinoxaline (IV) with certain gave 2-(arylidenehydrazino)-3-chloroquinoxalines aromatic aldehydes (XIIIa.d) which upon cyclization with bromine in acetic acid, afforded 1-aryl-4-chloro-[1,2,4]triazolo[4,3-a]quinoxalines corresponding the (XIV_{a-d}). Reaction of (XIV_a) with the corresponding alkoxide furnished respective 4-alkoxy-1-(3-nitrophenyl)-[1,2,4]triazolo[4,3-a]the quinoxalines (XV_{ab}). Amination of XIV_a with certain amines gave the 1-(3-nitrophenyl)-4-substituted-amino-[1,2,4]triazolo[4,3-a] respective (XVI_{a-h}). Reaction of XIV_a with thiourca furnished quinoxalines 1-(3-nitrophenyl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-thione (XVII). Attempted alkylation of XVII with chloroacetic acid afforded the acid derivative (XVIII). The latter mercaptoacetic corresponding compound was also prepared via reaction between XIV, and thioglycolic acid. Reaction of XIV, with ethyl thioglycolate afforded the ethyl ester (XVIV).

On the other hand, treatment of 3-hydrazinoquinoxalin-2(1H)-one (II) with different aromatic acids in phosphorus oxychloride followed by reaction with hydrazine hydrate afforded 1-aryl-4-hydrazino-[1,2,4]triazolo[4,3-a]quinoxalines (XX_{a,b}). XX_a was allowed to react with different aromatic aldehydes to afford 4-(arylidenehydrazino)-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalines (XXI_{a-c}). Reaction of XX_b with certain esters or orthoesters furnished [1,2,4]ditriazolo[4,3-a:3`,4`-c]quinoxaline derivatives (XXII, XXIII and XXIV).

Moreover, acetylation of XX_b with acetic anhydride afforded the triacetyl derivative (XXV). Reaction of XX_b with succinic anhydride afforded 1-(4-nitrophenyl)-4-[(2,5-dioxopyrrolidin-1-yl)amino]-[1,2,4] triazolo[4,3-a]quinoxaline (XXVI). However, reaction with phthalic anhydride furnished the [1,2,4]ditriazolo[4,3-a:3`,4`-c]quinoxaline derivative (XXVII). Finally, reaction of XX, with acetylacetone afforded the respective pyrazolo derivative (XXVIII).

Accordingly, this work comprises the synthesis of the following unavailable starting materials and reported intermediates which were essential for the present study:

- 1) 1,4-Dihydroquinoxaline-2,3-dione (I)
- 2) 3-Hydrazinoquinoxalin-2(1H)-one (II)
- 3) 2,3-Dichloroquinoxaline (III)
- 4) 2-Chloro-3-hydrazinoquinoxaline (JV)
- 5) 3-(Benzylidenehydrazino)quinoxaliπ-2(1H)-one (V_a)
- 6) 1-Phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (VI_a)
- 7) 5-Ethoxycarbonylmethyl-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (VII_a)
- 8) N-Substituted-2-chloroacetamides (VIII_{a-h})

In addition, this study comprises the synthesis of the following new series of compounds:

- 1) 3-(Arylidenehydrazino)quinoxalin-2(1H)-ones (V_{b-h})
- 2) 1-Aryl-[1,2,4]triazolo[4,3-a]quinoxalin-4(5II)-ones (VI_{b-h})
- 3) 1-Aryl-5-substituted-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-ones (VII_{b-i})

- 5) 5-(Hydrazinocarbonylmethyl)-1-phenyl-[1,2,4]triazolo[4,3-a]-quinoxalin-4(5H)-one (X)
- 6) 5-(Arylidenehydrazinocarbonylmethyl)-I-phenyl-[1,2,4]triazolo[4,3-a]- quinoxalin-4(5H)-ones (XI_{e-c})
- 7) 5-[5-(4-Nitrophenyl)-[1,3,4]oxadiazol-2-ylmethyl]-1-phenyl-[1,2,4]-triazolo[4,3-a]quinoxalin-4(5H)-one (XII)
- 8) 2-(Arylidenehydrazino)-3-chloroquinoxalines (XIII_{a-d})
- 9) 1-Aryl-4-chloro-[1,2,4]triazolo[4,3-a]quinoxalines (XIV_{a-d})
- $10) \quad \text{4-Alkoxy-1-(3-nitrophenyl)-[1,2,4] triazolo[4,3-a] quinoxalines } \\ (XV_{a,b})$
- 11) 1-(3-Nitrophenyl)-4-substituted-amino-[1,2,4]triazolo[4,3-a]-quinoxalines (XVI_{a-b})
- 12) 1-(3-Nitrophenyl)-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-thione (XVII)
- 13) 4-Carboxymethylmercapto-1-(3-nitrophenyl)-[1,2,4]triazolo[4,3-a]quinoxaline (XVIII)
- 14) 4-Ethoxycarbonylmethylmercapto-1-(3-nitrophenyl)-[1,2,4]-triazolo[4,3-a]quinoxaline (XVIV)
- 15) 1-Aryl-4-hydrazino-[1,2,4]triazolo[4,3-a]quinoxalines (XX_{a,b})
- 16) 4-(Arylidenehydrazino)-1-phenyl-[1,2,4]triazolo[4,3-a]quinoxalines (XXI_{sc})
- 17) 1-(4-Nitrophenyl)-[1,2,4]ditriazolo[4,3-a:3',4'-c]quinoxaline (XXII)
- 18) 1-Ethoxycarbonyl-6-(4-nitrophenyl)-[1,2,4]ditriazolo[4,3-a:3',4'-c] quinoxaline (XXIII)
- 19) 1-Ethoxycarbonylmethyl-6-(4-nitrophenyl)-[1,2,4]ditriazolo[4,3-a:3',4'-c]quinoxaline (XXIV)

- 20) N,N',N'-Triacetyl[4-hydrazino-1-(4-nitrophenyl)-[1,2,4]triazolo-[4,3-a]quinoxaline] (XXV)
- 21) 1-(4-Nitrophenyl)-4-[(2,5-dioxopyrrolidin-1-yl)amino]-[1,2,4]-triazolo[4,3-a]quinoxaline (XXVI)
- 22) 1-(2-Carboxyphenyl)-6-(4-nitrophenyl)-[1,2,4]ditriazolo[4,3-a:3`,4`-c]quinoxaline (XXVII)
- 23) 4-(3,5-Dimethylpyrazol-1-yl)-1-(4-nitrophenyl)-[1,2,4]triazolo-[4,3-a]quinoxaline (XXVIII)

The identity of the new compounds was substantiated by elemental analysis as well as IR, NMR and Mass spectral data.

The results of preliminary microbiological evaluation of certain selected new compounds have been given and most of the tested compounds showed antibacterial and/or antifungal activity.

INTRODUCTION

INTRODUCTION

Quinoxaline is benzo[b]pyrazine or 1,4-benzodiazine. The ring was early prepared by Hinsberg in 1884 through reaction of o-phenylenediamine and glyoxal ¹. The numbering of the quinoxaline ring system is shown in structure (1). The 2- and 3- positions are also designated as α-positions.

The reduced quinoxalines commonly encountered in the literature are the 1,2-(2), the 1,4-dihydro (3) and the 1,2,3,4-tetrahydroquinoxaline $(4)^2$.