STUDIES ON BIO-ORGANIC FERTILIZATION OF WHEAT UNDER NEWLY RECLAIMED SOILS

THESIS

B16934

Submitted in Partial Fulfillment Of The Requirements For The Degree

Of

DOCTOR OF PHILOSOPHY

In

Agricultural Microbiology

 $\mathbf{B}\mathbf{Y}$

FARID SHAWKI FARID BADAWI

B.Sc. (Soil Sci.)
Faculty of Agricultural, Ain Shams University (1990)

M.Sc. (Soil Sci.)
Faculty of Agricultural, Ain Shams University (1997)

Department of Agricultural Microbiology
Faculty of Agriculture
Cairo University

APPROVAL SHEET

STUDIES ON BIO-ORGANIC FERTILIZATION OF WHEAT UNDER NEWLY RECLAIMED SOILS

BY

FARID SHAWKI FARID BADAWI

This thesis has been approved by:

Prof. Dr. Mohamed Ali El-Borollosy

Prof. Agric., Microbiology,

Fac. Agric., Ain Shams University

to-Busines

Prof. Dr. Nadia Fahmy Emam

Prof. Agric., Microbiology,

Fac. Agric., Cairo University

Nadia Emam

Prof. Dr. Moawad Kamel Zahra

Prof. Agric., Microbiology,

Fac. Agric., Cairo University (Supervisor)

M. K. Zahra

Committee in Charge

Date: / / 2003

Cairo University
Faculty of Agriculture
Department of Agricultural Microbiology

SUPERVISION COMMITTEE

Name: FARID SHAWKI FARID BADAWI

Title: STUDIES ON BIO-ORGANIC FERTILIZATION OF

WHEAT UNDER NEWLY RECLAIMED SOILS

Degree: Ph.D. Agricultural Microbiology

Under the supervision of:

Prof. Dr. Moawad Kamel Zahra

Prof. Agric., Microbiology, Fac. Agric., Cairo University.

Prof. Dr. Zakia Ahmed Helmy

Prof. Agric., Microbiology, Fac. Agric., Cairo University.

Prof. Dr. Saleh Ahmed Saleh

Prof. Agric., Microbiology, Microbiology Dept., Soils, Water and Environ. Res. Institute, ARC, Giza, Egypt.

ABSTRACT

The present work concerns to study the bio-organic fertilization of wheat under newly reclaimed soils. The aims of the present study is to reduce the full dependence on chemical fertilizers and keep high productivity of wheat in the same time. To achieve the aims of this study, four enriched composted heaps were made from rice straw and filtermud cake at ratio of 1:1 by weight, then all heaps supplemented by chicken manure. Compost type (H₁) was considered as a control, while (H₂) received the mineral amendments of bentonite, rockphosphate and manganese-ore. Compost type (H₂) received biofertilizers of cellulolytic fungi, Azorobacter chroococcum and Becillus megaterium. Compost type (H₄) received both mineral amendments and biofertilizers. All heaps were aerobically composted till maturation (after 75 days) and stored for 360 days after maturation. The physical chemical and biological changes during the composting process and storage were evaluated. Also, the degree of maturity were tested.

A pot experiment was carried out under greenhouse conditions to select the most suitable rate of compost application for wheat growth under sandy soil conditions. Also, another pot experiment was conducted under greenhouse conditions to evaluate the response of wheat to Azorhizobium inoculation, compost application and different N-levels under sandy soil conditions. Finally, pot and field experiments were conducted to study the effect of selected compost types combined with Azorhizobium inoculation and different N-levels, compared to the recommended dose of N-fertilize; on wheat growth under sandy soil conditions.

The obtained results from monitoring of the composting process showed temperature reached maximum values within 1-3 days after each heap turning, then dropped to be similar to the ambient temperature at maturity with slightly higher temperature in amended heaps as compared to the unamended ones Furthermore, W.H.C. bulk density, E.C. total NPK, soluble-N and available P and K were increased with progressing the composting process and storage. While, O.C, O.M and C/N ratio were decreased. The changes were greatly affected by the applied amendments. In addition, the total counts of mesophilic bacteria and actinomycetes showed a little increase at early intervals of composting process, then they gave a high increase till the end of the process. On the other hand, the total counts of thermophilic microorganisms, mesophilic fungi and cellulose decomposers gave a high counts at early intervals, then they declined at the end of the composting and storage. Azotobacter and acid producing bacteria recorded a slight high counts in matured composts and there is an slight reduction in counts of both microbes at storage. In addition, all composted heaps at maturity showed a drop in temperature to be similar to the ambient temperature, while pH tested under anneropic conditions recorded an alkaline values. All ratios of the mesophilic/the morphilic microorganisms

were more than 1.0. The ratios of E_b/E₆(extinction coefficient) for all heaps was relatively lower which indicates a large particle size and characterized with humic acids more than fulvic acids. Amended heaps showed higher activity of dehydrogenase and nitrogenase activities compared to the unamended ones. Also, no inhibitory effect was appeared from using of compost water extract of all heaps during the germination test.

The obtained results from the first pot experiment showed that there are significant differences between application rate of zero and 5 ton compost/fed on wheat growth under sandy soil conditions, while there were no significant differences between 5 and 10 ton/fed. Application of 5 or 10 ton compost/fed improved chemical properties of sandy soil.

The obtained results from the second pot experiment showed that the response of wheat plants to Azarhizobium inoculation, different compost types and various N-levels was significant. The response of wheat to application of any type of compost (particularly H₂ or H₄) combined with inoculation gave higher results of plant growth, NPK contents as well as yield and some yield parameters under sandy soil conditions. The response of wheat to Azarhizobium inoculation combined with different N-levels showed that using higher levels of N-fertilizer with or without inoculation gave higher values of wheat plant growth, NPK uptake as well as yield and some yield parameters. The response of wheat to compost types (H₄ or H₂) combined with 25 kg N/fed gave grain yield similar to or higher than those obtained by the full dose of chemical N-fertilizer. On the other hand, Azarhizobium inoculation showed no significant effect on the sandy soil properties, while application of composts to sandy soils led to improve their chemical properties, particularly compost types (H₄ or H₂).

Also, the results of the third pot as well as the field experiments confirmed that application of compost types (H₂ or H₂) plus 25 kg N/fed combined with *Azorhizobium* inoculation gave wheat grain yield similar to those obtained by the recommended dose of chemical N-fertilizer. Application of compost types (H₄ or H₂) to sandy soils led to improve their chemical properties.

M. M. Zahna

was appeared from using of compost water extract of all heaps during the germination test.

The obtained results from the first pot experiment showed that there are significant differences between application rate of zero and 5 ton compost/fed on wheat growth under sandy soil conditions, while there were no significant differences between 5 and 10 ton/fed. Application of 5 or 10 ton compost/fed improved chemical properties of sandy soil.

The obtained results from the second pot experiment showed that the response of wheat plants to Azorhizobium inoculation, different compost types and various Nelevels was significant. The response of wheat to application of any type of compose (particularly H₂ or H₄) combined with inoculation gave higher results of plant growth, NPK contents as well as yield and some yield parameters under sandy soil conditions. The response of wheat to Azorhizohium inoculation combined with different Nelevels showed that using higher levels of Nefertilizer with or without inoculation gave higher values of wheat plant growth, NPK uptake as well as yield and some yield parameters. The response of wheat to compost types (H₄ or H₂) combined with 25 kg N/fed gave grain yield similar to or higher than those obtained by the full dose of chemical Nefertilizer. On the other hand, Azorhizohium inoculation showed no significant effect on the sandy soil properties, while application of composts to sandy soils led to improve their chemical properties, particularly compost types (H₄ or H₂).

Also, the results of the third pot as well as the field experiments confirmed that application of compost types (IL₁ or II₂) plus 25 kg N/fed combined with *Azorhizobium* inoculation gave wheat grain yield similar to those obtained by the recommended dose of chemical N-fertilizer. Application of compost types (H₄ or H₂) to sandy soils led to improve their chemical properties.

ACKNOWLEDGMENT

The author wishes to express his sincere thanks, deepest gratitude and appreciation to Prof. Dr. Meawad K. Zahra, Prof. of Agricultural Microbiology; Prof. Dr. Zakla A. Kelmy Prof. of Agricultural Microbiology, Faculty of Agriculture, Cairo University and Prof. Dr. Saleh A. Saleh, Head of Research, Department of Agricultural Microbiology, Solls, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza for their active supervision, helpful guidance and continuous assistance in writing and preparing this manuscript.

I would like to show my whole hearted and best thanks to all members of Biofertilizers Production Unit, Department of Agricultural Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza for their great help and for use of all facilities.

Thanks are also extended to all staff members of Agricultural Microbiology Dept., Fac. Agric., Cairo Univ., for their valuable advice and cooperation.

CONTENTS

	ragi
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Bioconversion of organic wastes to compost	3
2.1.1. Common materials for composting	3
2.1.2. Composting methods	4
2.1.3. Parameters influencing the composting process	6
2.1.3.1. Temperature	6
2.1.3.2. Moisture	8
2.I.3.3. Aeration	9
2.1.3.4. Particle size	01
2,1,3,5, pH	11
2.1.3.6. C/N ratio	12
2.1.3.7. Time	14
2.1.4. Changes in materials during composting process	15
2.1.5. Measurement of compost maturity	19
2.1,6. Enrichment of compost	23
2.2. Effect of compost on enhancement of new reclaimed sandy	10
soils	25
2.2.1. Physical properties	25
2.2.2. Chemical properties	26
2.2.3. Nutrients availability	27
2.2.4. Biological properties	29
2.3. Effect of agricultural wastes and compost on crop productivity.	30
2.3.1. Growth and yield	30
2.3.2. Nutritional status	32
2.4. Response of non-legume crops to bacterial inoculation	34
3. MATERIALS AND METHODS	39
3.1. Preparation of compost	39
3.1.1. Micro-organisms used	39
3.1.2. Raw materials used	40
3.1.3. Steps of compost preparation	40
3.1.4. Monitoring of composting process.	44
3.2. Media used	44
3.3. Methods of analysis	46
3.3.1. Raw materials and periodical compost analysis	46
3.3.1.1. Chemical and physical determinations	46
3.3.1.2. Determination of microbial population in compost	48
3.3.1.3. Measurement of compost maturity	48
3.3.2. Soil analysis	40

		Page
	3.3.3. Plant analysis	52
	3.4. Pot experiments	52
	3.4.1. The first pot experiment	52
	3.4.2. The second pot experiment	55
:	3.4.3. The third pot experiment	56
<i>:</i>	3.5. Field experiment	58
	3.6. Statistical analysis	60
·	4. RESULTS AND DISCUSSION	61
	4.1. Physical, chemical and biological changes during composting	
	process and storage	61
	4.1.1. Physical changes	61
	4.1.1.1. Temperature	61
	4.I.1.2. Water holding capacity (W.H.C.)	63
	4.1.1.3. Bulk density	66
	4.1.2. Chemical changes	67
	4.1.2.1. pH	67
	4.1.2.2. Electrical conductivity	69
	4.1.2.3. Organic carbon and organic matter	70
	4.1.2.4. Total nitrogen	70
	4.1.2.5. C/N ratio	73
	4.1.2.6. Total phosphorus and total potassium	74
	4.1.2.7. Soluble nitrogen, available phosphorus and available	
	potassium	76
	4.1.3. Microbial changes	80
	4.1.3.1. Total counts of mesophilic and thermophilic	00
	microorganisms	80
	4.1.3.2. Counts of mesophilic and thermophilic cellulose	00
	decomposers	84
	4.1.3.3. Counts of Azotobacter and acid producing bacteria	86
	4.2. Evaluation of composted heaps at maturity	
	4.2.1. Some physical charminal and minuchial nativity, tasts	86
	4.2.1. Some physical, chemical and microbial activity tests	88
	4.2.2. Cress seed germination as a biological test	94
	4.3. Effect of different levels of composted materials on wheat	
	grown in pots under sandy soil conditions compared to the	
	recommended dose of NPK	96
	4.3.1. Some growth parameters.	96
	4.3.2. Total contents of N, P and K	99
	4.3.3. Some chemical properties of sandy soil	102
	4.4. Response of pot-grown wheat to Azorhizobium inoculation,	
	compost application and different N-levels under sandy soil	104
	conditions.	106
	4.4.1. Response of wheat to Azorhizobium inoculation	107
	4.4.1.1. Plant growth of 60-day old wheat plants	107
	+.4.1.7 I ODI CONIENTS OF WISE ALGUARY AID Whoot alouds	100

	Page
4.4.1.3. Some yield parameters	110
4.4.1.4. Yield of wheat	110
4.4.1.5. Crude protein percentage and NPK yield of grain and	
straw	111
4.4.2. Response of wheat to compost application	112
4.4.2.1. Plant growth of 60-day old wheat plants	112
4.4.2.2. Total contents of NPK of 60-day old wheat plants	114
4.4.2.3. Some yield parameters	115
4.4.2.4. Yield of wheat	116
4.4.2.5. Crude protein percentage and NPK yield of grain and	110
straw	116
4.4.3. Response of wheat to different N-levels	117
4.4.3.1. Plant growth of 60-day old wheat plants	117
4.4.3.2. Total contents of NPK of 60-day old wheat plants	119
4.4.3.3. Some yield parameters	119
4.4.3.4. Yield of wheat	120
4.4.3.5. Crude protein percentage and NPK yield of grain and	131
4.4.4. Response of wheat to inoculation with azorhizobia	121
combined with compost application	122
4.4.4.1. Plant growth of 60-day old wheat plants	122
4.4.4.2. Total contents of NPK of 60-day old wheat plants	125
4.4.4.3. Some yield parameters	125
4.4.4.4. Yield of wheat.	126
4.4.4.5. Crude protein percentage and NPK yield of grain and	120
straw	127
4.4.5. Response of wheat to inoculation with azorhizobia	127
combined with different N-levels	128
4.4.5.1. Plant growth of 60-day old wheat plants	128
4.4.5.2. Total contents of NPK of 60-day old wheat plants	128
4.4.5.3. Some yield parameters	131
4.4.5.4. Yield of wheat	132
4.4.5.5. Crude protein percentage and NPK yield of grain and	
straw	132
4.4.6. Response of wheat to compost application combined	1
with different N-levels.	133
4.4.6.1. Plant growth of 60-day old wheat plants	133
4.4.6.2. Total contents of NPK of 60-day old wheat plants	137
4.4.6.3. Some yield parameters	137
4.4.6.4. Yield of wheat	138
4.4.6.5. Crude protein percentage and NPK yield of grain and	-
straw	139
4.5. Effect of Azorhizobium inoculation, compost application and	
different N-levels on some chemical properties of sandy soil	
after harvesting of wheat plants	1.60

4.5.1. Effect of Azorhizobium inoculation
4.5.2. Effect of different composted materials
4.5.3. Effect of different N-levels
4.6. Effect of selected compost types combined with Azorhizobium
inoculation and different N-levels as compared to the
recommended dose of N-fertilizer on wheat grown in pots
under sandy soil conditions
4.6.1. Plant growth of 60-day old wheat plants
4.6.2. Total contents of NPK of 60-day old wheat plants
4.6.3. Some yield parameters
4.6.4. Vield of wheat
4.6.5. Crude protein percentage and NPK yield of grain and
straw
4.7. Effect of selected compost types combined with Azorhizobium
inoculation and different N-levels as compared to the
recommended dose of N-fertilizer on filed-grown wheat
under saudy soil conditions
4.7.1. Plant growth of 60-day old wheat plants
4.7.2. Total contents of NPK of 60-day old wheat plants
4.7.3. Some yield parameters
4.7.4. Yield of wheat
4.7.5. Crude protein percentage and NPK yield of grain and
straw
4.8. Effect of compost application on some chemical properties of
sandy soil after harvesting of wheat
CONCLUSION
a Curaire Dr
5. SUMMARY
6 DETERMANCES
6. REFERENCES
ARABIC SUMMARY
ANADIC BUREMANT

LIST OF TABLES

Table No.		P
1	Some analytical data of used organic residues for compost preparation and farmyard manure used for the field experiment.	1
2	Some chemical properties of mineral materials used for compost preparation	;
3	Physico-chemical analysis of experimental soil during the two growing seasons of 1999/2000 and 2000/2001	;
4	Changes in some physico-chemical properties of organic wastes during composting and storage process under aerobic conditions	ı
5	Some measured properties in matured compost	ļ
6	Average number of normal cress seedlings and percentage of germination as affected by water extracts from soil, distilled water and extracts from composted heaps for monitoring of compost maturity.	9
	Effect of different levels of composted materials on some growth parameters of wheat grown in pots under sandy soil conditions compared to the recommended dose of NPK	9
8	Effect of different levels of composted materials on total contents of N,P and K of wheat grown in pots under sandy soil conditions compared to the recommended dose of NPK	1
9	The effect of different composted levels on some chemical properties of sandy soil after 75 days of wheat planting	1
10	The effect of Azorhizobium inoculation on: (a) Plant growth of 60-day old wheat plants (b) Total contents of NPK of 60-day old wheat plants (c) Some yield parameters (d) Yield of wheat (e) Crude protein percentage and NPK yield of grain and straw	1 1 1 1 1
11	The effect of different composted heaps on : (a) Plant growth of 60-day old wheat plants	1 1 1

	Table No.		Page
	1111.	(d) Yield of wheat(e) Crude protein percentage and NPK yield of grain and straw	113 113
-	12	The effect of nitrogen levels on :	
		(a) Plant growth of 60-day old wheat plants	118
·		(b) Total contents of NPK of 60-day old wheat plants	118
		(c) Some yield parameters	118
•		(d) Yield of wheat (e) Crude protein percentage and NPK yield of grain and straw	118 118
	13	The effect of Azorhizobium inoculation combined with different composted heaps on :	
		(a) Plant growth of 60-day old wheat plants	123
		(b) Total contents of NPK of 60-day old wheat plants	123
		(c) Some yield parameters	123
		(d) Yield of wheat	124
		(e) Crude protein percentage and NPK yield of grain and straw	124
:	14	The effect of Azorhizobium inoculation combined with different nitrogen levels on :	
		(a) Plant growth of 60-day old wheat plants	129
		(b) Total contents of NPK of 60-day old wheat plants	129
		(c) Some yield parameters	129
		(d) Yield of wheat.	130
		(e) Crude protein percentage and NPK yield of grain and straw	130
٠.	15	The effect of different composted heaps combined with different nitrogen levels on :	
•		(a) Plant growth of 60-day old wheat plants	134
		(b) Total contents of NPK of 60-day old wheat plants	134
		(c) Some yield parameters	135
		(d) Yield of wheat	135
		(e) Crude protein percentage and NPK yield of grain and straw	136
	16	Main effects of inoculation, compost types and different nitrogen	
		levels on some chemical properties of sandy soil after harvesting	
		of wheat grown in pots	142
	17	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on plant growth of wheat grown in pots under sandy soil conditions (60 DAP)	148
٠.	16		- 1.3
	18	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on total contents of NPK of wheat grown in pots under sandy soil	
		conditions (60 DAP)	151

Table No.		Page
19	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on some yield parameters of wheat grown in pots under sandy soil conditions	154
20	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on yield of wheat grown in pots under sandy soil conditions	156
21	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on crude protein and NPK yield in both grain and straw of wheat grown in pots under sandy soil conditions	159
22	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on plant growth of field-grown wheat under sandy soil conditions (60 DAP)	163
23	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on total contents of NPK of field-grown wheat under sandy soil conditions (60 DAP)	165
24	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on some yield parameters of field-grown wheat under sandy soil conditions.	169
25	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on yield of field-grown wheat under sandy soil conditions	171
26	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on crude protein and NPK yield in both grain and straw of field-grown wheat under sandy soil conditions	174
27	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on some chemical properties of sandy soil after harvesting of pot-grown wheat	177
28	Effect of different compost types combined with different nitrogen levels compared to the recommended dose of N-fertilizer on some chemical properties of sandy soil after harvesting of field-grown wheat	170

•

1

LIST OF FIGURES

Figure No.		Pag
1	Temperature recorded at different periods during composting process of different composted heaps as compared to ambient temperature	62
2 .	Changes in water holding capacity and bulk density of composted materials during composting process and storage	65
3	Changes in pH and E.C of composted materials during composting process and storage	68
4	Changes in organic carbon and organic matter of composted materials during composting process and storage	71
5	Changes in total-N and C/N ratio of composted materials during composting process and storage	72
. <mark>6</mark>	Changes in total-P and total-K of composted materials during composting process and storage	75
7 .	Changes in total soluble-N, available-P and available-K of composted materials during composting process and storage	77
8	Total counts of mesophilic microorganisms in composted materials during the decomposition periods and storage	18
9	Total counts of thermophilic microorgansms in composted materials during the decomposition periods and storage	82
10	Survival of mesophilic cellulose decomposers in different composted materials during the decomposition periods and storage.	85
11	Survival of thermophilic cellulose decomposers in different composted materials during the decomposition periods and storage.	85
12	Counts of Azotobacter in different composted materials at maturity and storage	87