

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

B17416

MINUFIYA UNIVERSITY FACALTY OF AGRICULTURE AGRICULTURAL ENGINEERING DEPARTMENT

Researcher Name: Yasser Mohamed Mahrous EL-Sayed Atta

Thesis Title.

EVALUATION OF THE PERFORMANCE OF THE DRIP IRRIGATION SYSTEM FOR SOIL TREATED BY SOIL CONDITIONERS

SUPERVISORS:

Prof. Dr. Sayed Mohamed Sharaf Head of the Agricultural Engineering Department; Faculty of Agriculture; Minufiya University.

Prof. Dr. Abdel Ghany Mohamed EL- Gindy Professor of the Agricultural Engineering Vice Dean of Community Service & Development of Environment Faculty of Agriculture; Ain Shams University.

Dr. Salih Mohamed Aly Associate Professor of the Soils Faculty of Agriculture; Minufiya University.

Dr. Mohamed Aly Hassan Aboamera Lecturer of the Agricultural Engineering; Faculty of Agriculture; Minufiya University.

APPROVAL SHEET

EVALUATION OF THE PREFORMANCE OTHE DRIP IRRIGATION SYSTEM FOR SOIL TREATED BY SOIL CONDITIONERS.

BY

YASSER MOHAMED MAHROUS EL SAYED ATTA

Thesis

Submitted In Partial fulfillment of the Requirement for the Degree of Master of Science

In

AGRICULTURAL ENGINEERING

Department of Agricultural Engineering Faculty of Agriculture Minufiya University

Approved

November -1999.

ABSTRACT

ABSTRACT

The investigation aims to evaluate the performance of the drip irrigation system in sandy soil, which used under different concentration levels from soil conditioners and different location from dripper in relation to the plant.

For that purpose the contour lines of the moisture content had been studied on a different irrigation periods, moreover the crop water consumption (ET) and crop production at irrigation rates also had been studied.

The results concluded that,

- The using double lateral line with in increasing the level of polymer concentration the moisture distribution improved greatly specially the horizontal direction and highest value of moisture content were around the depth of 30 cm for all times.
- The results show that, using double laterals increased water use efficiency with increase polymer concentration.
- The decrease in evapotranspiration for using double lateral instead of single lateral was 3, 8, &12.5% for zero, 12.5 and 25 kg /fed. Of polymer concentration respectively.
- Average yield increased for zero concentration was 56% by turning from single to double lateral treatment. For 12.5& 25 kg/fed. Of polymer rate, the average yield increase 69% and 64% respectively.
- The highest net income excluding fixed cost 1843 LE/fed. Was obtained by double lateral with 25kg /fed. Of polymer while the lowest value 365LE/fed. Was obtained by single lateral without polymer application.

Acknowledgements

The author is greatly indebted to prof. Dr. Sayed Mohamed sharaf. Prof. Of Agricultural Engineering Department. Faculty of Agriculture, Minufiya University, for his deeply invaluable assistance, supervision and continuous encouragement throughout this work.

The author would also like to express his gratitude to Prof. Abdel Ghany Mohamed El-Gindy Prof. Of Agricultural Engineering Department. Faculty of Agriculture, Ain Shams University. For his supervision and Continuous encouragement throughout this work.

Special thanks to Prof. Dr. Salih Mohamed Aly Prof. Of Soil. Soil Science Dept. Faculty of Agriculture, Minufiya University for his kind co-operation.

The author would also like to express his gratitude to Dr. Mohamed Aly Hassan Aboumera, Lecturer, Department of Agricultural Engineering, Faculty of Agriculture, El-Minufiya University, for supervision and help.

Special thanks are also to all members of the Agricultural Engineering Department. Faculty of Agriculture, El-Minufiya University, for their cooperation.

Special thanks are also to be extended to all members of Drainage Research Institute and water Management and irrigation Method Institute for their co-operation.

TABLE OF CONTENTS

ABSTRACT	I
TABLE OF CONTENTS	П
1 INTERODUCTION	1
2 REVIEW OF LITERATURE	3
2.1 Drip Irrigation System Components	3
2.2 Design of trickle irrigation system	6
2.2.1 Basic consideration in design	6
2.2.2 Design criteria for drip irrigation system	6
2.2.2.1 Water requirement	7
2.2.2.2 Emitter Selection Criteria	8
2.2.2.3 Field layout	9
2.2.2.4 Percent area wetted	11
2.2.2.5 Estimating Water Saving	13
2.2.2.5.1 Estimating (Et)	15
2.2.2.5.2 Field evapotranspiration	17
2.3 Effect of adding soil conditioners	18
2,3.1 Moisture characteristics affect	18
2.3.2 Yield affect	20
2.3.3 Soil properties affect	22
2.4 Soil-Plant-Water-Considerations	25
3 MATERIALS AND METHODS	28
3.1 Irrigation System Layout	28
3.2 Soil Conditioner	33

3.3 Pepper Planting	33
3.4 Irrigation Water Requirements	34
3.5 Moisture Distribution	36
3.6 Estimating Evapotranspiration (Tec) And Crop Coefficient (Kc)	39
4 RESULTS AND DISCUSSION	41
4.1 Moisture Distribution	41
4.1.1 Moisture Distribution for single lateral treatment	41
4.1.2 Moisture Distribution for double lateral treatment	46
4.2 Actual evapotranspiration (ETc)	50
4.3 Crop Coefficient (Kc)	57
4.4 Cations and Anions concentration	63
4.4.1 Cations concentration	63
4.4.2 Anions distribution	63
4.5 Yield water relationship	66
4.6 Water use efficiency	68
4.7 Yield	69
4.7.1 Lateral effect	69
4.7.2 Polymer effect	70
4.7.3 Pepper plant height	72
4.7.4 Number and weight of fruits per plant	74
4.8 Economic evaluation	76
5 SUMMARY AND CONCLUSION	78
6 REFRENCES	79

INTERODUCTION

1. INTERODUCTION

Drip irrigation system as a modern system of irrigation can supply water economically. The major influence on the reclamation of sandy soils was not so much the amount of water applied, but it was the water distribution in the root and the prevention of water movement in soil profile by seepage or evaporation. The draw way of the drip irrigation system in sandy soils is a narrow water column under the emitter, conducting water to great depth in soil profile. To prevent this, a horizontal treatment should be applied to the top soil, so that the water will move horizontally due to the peel of capillary.

Adding soil conditioner to the sandy soils proved a great improvement on soil moisture characteristics and both of its chemical and hydrophysical properties and its relation to water conservation.

The main objective of this work was to evaluate the performance of the drip irrigation system in sandy soils treated by soil conditioner and compare it with its performance in untreated soil. The evaluation of the performance was form the point of view of the following parameters:

- 1) Soil moisture distribution in soil profile for the treated sandy soil
- The actual water consumption for the plant grown in the treated soil and value of crop coefficient throughout the agriculture season.

- The quantity of the obtained yield from the treated soil and its relation to water applied
- 4) The quality of the final product obtained
- 5) Anions and cations concentration in soil profile for the treated soil and the variation, which was, be accured due to adding soil conditioner.
- 6) The values of water savings percent, which may be, exist as a result of improving the soil properties.

Finally, the evaluation of the drip irrigation performance in this case must be concern with a simple economic evaluation in order to drive the net income obtained from the product grown in soil treated by soil conditioner.