

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

B 17424

ALEXANDRIA UNIVERSITY

FACULTY OF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

A STUDY IN VALVELESS PULSED COMBUSTOR AND GAS DYNAMIC COUPLING OF TWIN COMBUSTORS

bY

SAMIR GAMAL EL-DIN AHMED

B.Sc. (ENG.)

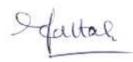
A THESIS

FOR FULFILLMENT OF MASTER SUBMITTED

DEGREE OF SCIENCE IN MECHANICAL ENGINEERING

SUPERVISED BY

Prof. Dr. A.I. ABDEL FATTAH


Prof. Dr. E.S. MARZOUK

Dr. F. EL-ERIAN

Prof. Dr. Abdel Fattah I. Abdel Fattah

Professor, Mechanical Engineering Department

Alexandria University

Hat ward

Prof. Dr. Salah H. Al-Emam

Professor, Mechanical Engineering Department,

Mansoura University.

Prof. Dr. Hassan A. Wardah

Professor, Mechanical Engineering Department

Alexandria University

Prof. Dr. El Sayed M. Marzouk

Assistant Professor, Mechanical Engineering Department

Alexandria University

SHA

ACKNOWLEDGENENTS

The author wishes to express his gratitude and appreciation to his supervisors, Prof. Dr. A.I. Abdulfattah and Prof. Dr. E.S. Marzouk for their invaluable guidance and encouragement during the course of this work, and for the advice and help given during the preparation of this manuscript.

Thanks are also due to the staff of the Internal Combustion Engines Laboratory for their help and cooperation.

Finally the author wishes to express his greatest appreciation to the staff of the workshop of Abu Qir Power Plant for the fabrication of some of the equipment skillfully.

ABSTRACT

A self aspirating valveless pulsed combustor is a cyclic operating combustor, without moving parts, in which the basic feature is the utilization of inertia effects associated with the non steady motion of combustion products for the purpose of scavenging the combustion space and drawing in fresh charge, precompressing it before ignition in each cycle. The products of combustion are expelled with high velocity permitting work extraction from the machine.

Potential applications and advantages of pulsating combustion are presented. The present study, however, aims at employing the phenomena for use in gas turbine to benefit from the gain in stagnation pressure across the combustion chamber instead of the customary loss associated with the use of conventional steady flow combustion chambers.

For this purpose, a highly rated, propane fueled, valveless pulsed combustor was constructed based on SNECMA/Lockwood design with 10 % increase in linear dimensions so that the combustion chamber diameter was 80 mm. Historical review have-been-presented which suggested

that improving the air breathing capacity of the unit and improving the fuel distribution in the air charge for its full utilization, are of discrete importance to realize full potential performance from a combustor. So, an experimental test programe was carried out to optimize the combustor for maximum specific thrust and minimum specific fuel consumption. Different fuel injection nozzles, aerodynamic inlet forms, tail pipe lengths and throat areas were tested. The developed optimized configuration resulted in improved performance compared to that of SNECMA with 6% increase in maximum total specific thrust and 12% reduction in specific fuel consumption.

A second objective was to develop a gas dynamic coupling system for twin combustors at their exits.

A simplified wave analysis presented suggested how the correct coupling configuration proposed would result in some degree of precompression and in antiphase operation which aid in suppressing noise. The analysis also provided the lengths required for inlet air pipe to plenum and non steady flow ejectors needed.

The non steady ejectors were experimentally tested in ambient air (without plenum chamber) for maximum thrust augmentation. The optimum configuration resulted in 65% increase in thrust produced from combustor tail end at same fuel flow rate.

The coupling system successfully achieved antiphase locked operation of the twin combustors. The fundamental frequency in the plenum chamber doupled to 360 Hz leading to good measure of noise suppression. This would also improve the effectiveness of accoustic absorbant media for the complete combustor when used for engine integration. However, the thrust produced at the exit end was reduced by about 60% at the same fuel flow rate. This is propably due to the low pressure resulted in the exhaust plenum because of the pumping effect required to suck air inflow to the plenum and the high augmentation ratio of the two ejectors. This effect would be overcome on the complete combustion chamber coupled with rectified forward thrust from combustors inlets.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGMENTS	í
ABSTRACT	ii
TABLE OF CONTENTS	V
LIST OF FIGURES	ix
NOMENCLATURE	xiv
CHAPTER	
1. INTRODUCTION	
1.1 BACKGROUND	1
1.2 BRIEF HISTORY	5
1.3 APPLICATIONS, ADVANTAGES AND	
DISADVANTAGES	В
1.4 COUPLING OF PULSED COMBUSTORS	15
1.5 SCOPE OF WORK	18
1.6 ORGANIZATION OF THE TEXT	19
2. THE EXPERIMENTAL EQUIPMENT	26

	2.1 INTRODUCTION	26
	2.2 THE PULSED COMBUSTOR WITH SIMPLE	
	INLET (VALVELESS)	27
	2.3 COMBUSTOR OPTIMIZATION EQUIPMENT	29
	2.3.1 Fuel injection nozzles	29
	2.3.2 Tail pipe	30
	2.3.3 Inlet pipe (aerovalve)	31
	2.4 COUPLING EQUIPMENT	32
	2.4.1 Exhaust plenum	32
	2.4.2 Unsteady Flow Ejectors	33
	2.4.3 Exhaust plenum air inlet pipe	35
	2.5 AUXILLARY EQUIPMENT	35
	2.5.1 Fuel system	35
	2.5.2 Ignition system and starting	
	air arrangement	37
	2.5.3 Thrust measurement	38
	2.5.4 Noise level measurements	39
3.	ELEMENTARY WAVE STUDY FOR THE EXHAUST	
	COUPLING PROPOSAL	52
	3.1 INTRODUCTION	52
	3.2 BRIEF REVIEW OF THE PROCEDURE	53
	3.3 WAVE DIAGRAM FOR EXHAUST COUPLING	56
4.	EXPERIMENTAL PROCEDURES, RESULTS AND	
	DISCUSSIONS	68
	4.1 PERFORMANCE PARAMETERS OF PULSED	
	COMBUSTOR	68

	4.1.1 Dependent parameters	68
	4.1.2 Independent parameters	72
4.2	EXPERIMENTAL PROCEDURES	73
4.3	COMBUSTOR OPTIMIZATION INCENTIVE AND	
	ORGANIZATION	74
	4.3.1 Injection nozzles configurations	77
	4.3.2 Optimization of throat diameter	
	of tail pipe	81
	4.3.3 Optimization of tail pipe length	8 2
	4.3.4 Optimization of inlet pipe	
	configuration	8 4
	4.3.5 Optimization of inlet pipe length	8 7
	4.3.6 The optimum configuration of the	
	pulsed Combustor	88
4.4	COUPLING OF TWIN PULSED COMBUSTORS AT THEIR	
	TAIL ENDS	89
	4.4.1 Dual operation of twin combustors.	89
	4.4.2 Optimization of non steady flow	
	ejectors in Ambient conditions	90
	4.4.2.1 Optimization of ejector area	
	ratio	91
	4.4.2.2 Optimization of distance	
	between the Ejector inlet area	
	and tail pipe end	92
	4.4.2.3 Optimization of divergence	
	angles of the non-steady	