

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

SOME BEHAVIOURAL PATTERNS OF FISH UNDER ARTIFICIAL CONDITION

Ву

B17430

1

IBRAHIM MOHAMED FARES (M.V.Sc., Zagazig University, 1994)

Under the supervision of

Dr.
Rabei El- S. Saleh
Professor of Vet. Hygiene
Vice dean of Faculty of Vet. Med,
Suez Canal University

Dr.
Mohamed.A. Sobieh
Professor of Vet. Hygiene
Faculty of Vet. Med,
Suez Canal University

Dr.

Zamzam H. Ahmed Professor of Vet. Hygiene Faculty of Vet. Med, Suez Canal University Dr.

Hiroshi Ueda
Associate professor and director of
Toya Lake Station for Environmental
Biology. Faculty of Fisheries,
Hokkaido University

Ph. D. Thesis Presented

To

Suez Canal University for the fulfillment of the degree of Doctor of Philosophy in Veterinary Sciences (Animal and Poultry Hygiene) 1998

SUEZ CANAL UNIVERSITY FACULTY OF VETERINARY MEDECINE Dept. of Animal Hygiene, Nutrition & Behaviour

Approval Sheet

This is to approve this dissertation by Ibrahim Mohamed Faris to Suez Canal University entitled " Some Behavioural Patterns of Fish Under Artificial Condition" For the degree of Ph.D. in Vet. Sc. has been approved in 22/08/1998 by the examined committee.

Signature

1-Prof.Dr. Abdel Kerim Mohmoud Abdel Kerim.

Prof. of Animal Hygiene, Faculty of Veterinary Medecine, Cairo University

2-Prof.Dr. Hassan Abdel Aziz Edarows

Prof. Head of Dept. of Hygiene & preventive Med., Faculty of Vet Med. (Moshtohor) Zagazig University .

3-Prof.Dr. Rabei El-Sayed Saleh Hussein

Prof. and Vice Dean of Faculty of Vet.Med. Suez Canal University .

4-Prof.Dr. Zamzam Hassan Abdel Wahed

Prof. Animal Hygiene, Faculty of Vet.Med. Suez Canal University .

5- Prof.Dr. Hiroshi Ueda, Ph.D.

Director of Toya Lake Station for Environmental Biology, The State Aloss Faculty of Fisharies, Hokkaido University .

SUEZ CANAL UNIVERSITY FACULTY OF VETERINARY MEDECINE Dept. of Animal Hygiene, Nutrition & Behaviour

Approval Sheet

This is to approve this dissertation by **Ibrahim Mohamed Faris** to Suez Canal University entitled "**Some Behavioural Patterns of Fish Under Artificial Condition**" For the degree of Ph.D. in Vet. Sc. has been approved in 22/08/1998 by the examined committee.

Signature

1-Prof.Dr. Abdel Kerim Mohmoud Abdel Kerim____ Prof. of Animal Hygiene, Faculty of Veterinary Medecine, Cairo University

2-Prof.Dr. Hassan Abdel Aziz Edarows
Prof. Head of Dept. of Hygiene & preventive Med.,
Faculty of Vet Med. (Moshtohor) Zagazig University.

3-Prof.Dr. Rabei El-Sayed Saleh Hussein Prof. and Vice Dean of Faculty of Vet.Med. Suez Canal University.

4-Prof.Dr. Zamzam Hassan Abdel Wahed Prof. Animal Hygiene , Faculty of Vet.Med. Suez Canal University . Juster Hassen

5- Prof.Dr. Hiroshi Ueda, Ph.D.

Director of Toya Lake Station for Environmental Biology,
Faculty of Fisharies, Hokkaido University

DEDICATED TO... MY LATE FATHER, MY MOTHER, MY BROTHERS AND SISTERS

Acknowledgments

First of all, the author is greatly indebted in all his work and success to our Merciful "GOD".

I would like to express my deep gratitude and sincere thanks to my promoter, Dr. R. EL-Sayed Saleh, Professor of Vet. Hygiene and Zoonoses, and Vice Dean of Faculty of Vet., Med., Suez Canal Univ., for his faithful guidance and assistance during the course of this work.

I am highly indebted to my supervisor, **Dr. M. A. Sobieh**, Professor of Vet. Hygiene, Faculty of Vet. Med., Suez Canal Univ., for his encouragement and advice before and during the course of this work.

Cordial thanks to my supervisor, **Dr. Z. H. Ahmed**, Professor of Vet. Hygiene, Faculty of Vet. Med., Suez Canal Univ., for her encouragement and advice before and during the course of this work.

I would like to express my deep gratitude and sincere thanks to my supervisor, **Dr. Hiroshi Ueda**, Associate Prof., Faculty of Fisheries, Hokkaido University, and the director of Toya Lake Station for Environmental Biology for his faithful guidance and assistance during the course of this work.

I would like to express my great thanks to **Dr. T. Shoji**, Faculty of Pharmaceutical Science, Hokkaido University for his teaching me the electrophysiological technique and his helping during the course of the work.

My great thanks to **Dr. J. B. K. Leonard** (GSPS/NSF Postdoctoral Fellow) for her help and critical reading of the dissertation.

Great thanks to all staff members of Toya Lake Station for Environmental Biology for their help during the course of the work.

Finally, I hope to extend my appreciation to my colleagues in the Faculty of Vet. Med., Suez Canal University for their encouragement.

CONTENTS

INTRODUCTION	Page 1
REVIEW OF LITERATURE	5
MATERIAL AND METHODS	16
RESULTS	26
DISCUSSION	81
SUMMARY	92
CONCLUSION	95
REFERENCES	97
VITA	111
ARABIC SUMMARY	

LIST OF TABLES

Table	Page
(1) Relative stimulatory efficacy (RSE; mean ± S.E.) of the	
olfactory neural response of Nile tilapia to different	
concentrations of amino acids. RSE is response standardized	
to the response to 10 ⁻⁴ M serine.	29
(2) Relative stimulatory efficacy (RSE; mean ± S.E.) of the	
olfactory neural response of masu salmon to different	
concentrations of amino acids. RSE is response standardized	
to the response to 10 ⁻⁴ M serine.	32
(3) Relative stimulatory efficacy (RSE; mean ± S.E.) of	
amino acids in Nile tilapia standardized to the response to	
10 ⁻⁴ M serine. Groupings indicate the results of a post hoc	
Newman-Kuels analysis where amino acids sharing the same	
letter do not produce significantly different olfactory	
responses.	35
(4) Relative stimulatory efficacy (RSE; mean ± S.E.) of	
amino acids in masu salmon standardized to the response to	
10 ⁻⁴ M serine. Groupings indicate the results of a post hoc	
Newman-Kuels analysis where amino acids sharing the same	
letter do not produce significantly different olfactory	
responses in the non-spawning period.	36
(5) Relative stimulatory efficacy (RSE; mean ± S.E.) of	
amino acids in masu salmon standardized to the response to	
10 ⁻⁴ M serine. Groupings indicate the results of a post hoc	
Newman-Kuels analysis where amino acids sharing the same	
letter do not produce significantly different olfactory	
responses during the spawning period.	37
(6) Results of repeated measures analysis of variance	
testing for the effects of sex and amino acids on olfactory	
neural response in Nile tilapia.	38

(7) Results of repeated measures analysis of variance	
testing for the effects of sex and amino acids on olfactory	
neural response in masu salmon during the non-spawning	
season. 40	0
(8) Results of repeated measures analysis of variance	
testing for the effects of sex and amino acids on olfactory	
neural response in masu salmon during the spawning season. 42	2
(9) Results of repeated measures analysis of variance	
testing for the effects of season, sex and amino acids on	
olfactory neural response in masu salmon.	4
(10) Relative stimulatory efficacy (RSE; mean ± S.E.) of the	
olfactory neural response of Nile tilapia to different	
concentrations of mucus. RSE is response standardized to	
the response to 10 ⁻⁴ M serine.	ŝ
(11) Relative stimulatory efficacy (RSE; mean ± S.E.) of the	
olfactory neural response of masu salmon to different	
concentrations of mucus. RSE is response standardized to	
the response to 10 ⁻⁴ M serine.)
(12) Results of repeated measures analysis of variance	
testing for the effects of fish sex and mucus sex on the	
olfactory neural response of Nile tilapia.	2
(13) Results of repeated measures analysis of variance	
testing for the effects of fish sex, season, and mucus sex on	
the olfactory neural response of masu salmon. 54	1
(14) Results of repeated measures analysis of variance	
testing for the effects of fish sex, time of mucus collection,	
and mucus sex on the olfactory neural response of masu	
salmon. 56	ö
(15) Results of repeated measures analysis of variance	
testing for the effects of fish sex, method of mucus	
collection, and mucus sex on the olfactory neural response	
of masu salmon.	3
testing for the effects of fish sex, method of mucus collection, and mucus sex on the olfactory neural response	8

(16) Relative stimulatory efficacy (RSE; mean ± S.E.) of the	
olfactory neural response of Nile tilapia to different	
concentrations of urine, RSE is standardized to the response	
to 10 ⁻⁴ M serine.	60
(17) Results of repeated measures analysis of variance	
testing for the effects of fish sex and urine sex on the	
olfactory neural response of Nile tilapia.	63
(18) Results of repeated measures analysis of variance	
testing for the effects of sex on the olfactory neural	
response to steroids (testosterone, estradiole, 17α,20β-	
dihydroxy-4-pregnin-3-one (DHP)) and PGF2 α in Nile tilapia.	65
(19) The frequency (mean ± S.E.) of locomotor behaviour in	
Nile tilapia before and after amino acid delivery.	68
(20) The frequency (mean ± S.E.) of locomotor behaviour in	
masu salmon before and after amino acid delivery.	70
(21) The frequency (mean ± S.E.) of locomotor behaviour in Nile	
tilapia before and after skin mucus delivery.	72
(22) The frequency (mean ± S.E.) of locomotor behaviour in	
masu salmon before and after skin mucus delivery.	75
(23) The frequency (mean ± S.E.) of locomotor behaviour in	9
Nile tilapia before and after urine delivery.	78

LIST OF FIGURES

Figure	Page
(1) (a) Experimental set-up for integrated olfactory neural	
recording. I: integrator; OB: olfactory bulb; ON: olfactory nerve;	
PA: pre-amplifier; RE: recording electrode; S: stimulus.	
 b) Twin tungsten electrodes for olfactory nerve recording. 	26
(2) Nile tilapia under electrophysiological experimental	
conditions.	27
(3) Experimental aquaria and stimulus delivery systems.	
Paper screens between successive aquaria prevent fish in	
adjacent aquaria from visually recognise each others	
behaviour.	28
(4) Relative stimulatory efficacy (RSE) of olfactory neural	
response of Nile tilapia to different concentrations of amino	
acids. RSE is response standardized to the response to 10 4M	
serine.	30
(5) (a) Typical integrated olfactory neural response from a	
male Nile tilapia (TL=24.2cm, W=266g) to a concentration	
series of L-Serine with a logarithmic increase in stimulus	
concentration.	
(b) Plot of mean log male tilapia response v. log L-serine (□)	
concentration; extrapolated regression line intersects the	
response to control (AFW) at point indicating the theoretical	
minimum detection threshold.	31
(6) Relative stimulatory efficacy (RSE) of the olfactory	
neural response of masu salmon to different concentrations of	
amino acids. RSE is response standardized to the response to	
10 ⁻⁴ M serine.	33
(7) (a) Typical integrated olfactory neural response from a	
male masu salmon (TL=26.7cm, W=182.6g) to a	
concentration series of L-serine with a logarithmic increase	