

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

The Efficacy of Chlorophyllin Treatment in Reducing Liver Damage Induced by AF_{BI} and Gamma Irradiation

in Rats

B16989 B16999

Thesis
Submitted To The Faculty of Science
Cairo University

For
The Degree of PH.D
By
Rene Goergy Rezk
(B.Sc., M.Sc. Zoology)

National Center for Radiation Research and Technology

Cairo 2001

APPROVAL SHEET

Title of the Ph.D. Thesis:

The Efficacy of Chlorophyllin Treatment in Reducing Liver Damage Induced by AFB1 and Gamma Irradiation in Rats

Name of Candidate:

René Georgy Rezk Mlika

Submitted to the Faculty of Science, Cairo University

Supervision Comnittee:

1- Prof. Dr. Nagla Kamal El Sayed
Prof. Of Zoology, Faculty of Science,
Cairo University

2- Prof. Dr. Mohamed Abdel Hamid Mansour
Prof. and Head of National Center for Radiation
Research and Technology

3 Prof. Dr. Safaa Mohamed Ahmed Nasr

Head of Health Research Department at National Center for RadiationResearch and Technology

4- Assistant Prof. Dr. Aliaa Mahmoud Issa Assistant Prof. of Zoology, Faculty of Science, Cairo University

Head of Zoology Department

Prof. Dr. Mohamed Ismail

ACKNOWLEDGEMENT

I am, and will always be, indebted to Allah, the most Gracious and the most Merciful, the bounties of whom I can never reckon.

I would like to express my deepest gratitude and sincere appreciation to Prof. Dr. Nagla Kamal EL-Sayed, Prof of Histology, Histochemistry and cell biology, Zoology Department, Faculty of Science, Cairo University, for her continuous interest, motherly encouragement, invaluable advice, fruitful discussions and her generous efforts are acknowledged with gratitude. Her support and unlimited help, throughout this work, her intelligent remarks throughout the various steps of this work and critical reading and reviewing of the manuscript are highly appreciated.

No words are sufficient to express what I have in my heart for my teacher.

I am greatly indebted to Prof. Dr. Mohamed Abdel Hamid Mansour, Chairman of National Center for Radiation Research and Technology (NCRRT), Cairo, who has spared no effort to provide me with the knowledge, experience and facilities necessary for achieving my work. His supervision, valuable advice and constructive criticism have been landmarks along my path.

Words can never express my appreciation to Prof. Dr. Safaa Nasr; Prof. of Medical Science and Head of Health Research Department, NCRRT for suggesting the point of research and work plan and her faithful supervision and guidance in the practical part and the interpretation of data. She has exerted every effort to provide me

with the equipment and material necessary for this work.

I am very grateful and indebted to Assist. Prof. **Dr. Aliaa Mahmoud Issa**. Assistant Prof. of Zoology, Faculty of Science,
Cairo University, for sharing in the supervision, and her continuous support.

Thanks are expressed to Prof. Dr. Nour EL-Dein Amin, Head of Biotechnological Branch, NCRRT for enlighting me with his vast experience and offering all the facilities needed during the work.

Last but not least 1 wish to thank my friends, and colleagues who have helped and supported me in one way or another during my work and many thanks to Mr. Mohamed Mahmoud for his patience in typing the manuscript.

اهـــــداء

This work is dedicated to the deep memory of my father.

To the loving respect of my mother.

To m y husband.

To my sister and brother.

CONTENTS

INTRODUCTION	Page
1- The REVIEW OF The LITERATURE	l z
	5
1.1- Hapatocellular Carcinoma	5
1.1.1- Epidemiology of hepatocellular carcinoma.	5
1.1.2- Etiology of hepatocellular carcinoma.	6
1.2- The Aflatoxin (AF)	7
1.2 1- The effect of aflatoxin on animals	8
1.2.2- Clinical and pathological effects of aflatoxin	9
1.2.3- Mechanism of AFB ₁ related HCC	10
1.2.4- Effect of aflatoxin on liver and blood transferases	12
1.2.5- Histological types of toxin-induced hepatic necrosis	15
1.3 Radiation Toxicology	18
1.3.1- Radiation biochemistry	18
1.3.2- Factors affecting radiation response.	20
1.3.3Radiation induced cancer	21
1.3.4- Radiation effects on the liver	22
1.3.4.1. Effect of radiation on liver and blood transferases	22
1.3.4.2. Histopathologic effects	24
1.4. Chlorophyllin (CHL)	26
1.4.1. Chlorophyllin and aflatoxin B ₁	31
1.4.2. Chlorophyllin and radiation	34
1.5. Image Analysis.	36
2-MATERIALS AND METHODS	44
2.1. Experimental Design	44
2.2. Biochemical Analysis	50
2.2.1.Determination of transferases	50
2.3. Statistical Analysis	53
2.4 Histologic Preparations	46

	Page
2.5. Image Analysis	55
2.5.1. Measured parameters	56
2 5.2. Statistical Analysis	57
2.5.3.3D profile	58
2.5.4. Stereology	59
3-RESULTS	60
3.1. Biochemical Results.	61
3.1.1. Estimation of ALT in the various groups	61
3.1.1.1 Negative control group	61
3.1.1.2. Positive control groups	61
3.1.1.3. Test groups	62
3.1.2. Estimation of AST in the various groups	66
3.1.2.1. Negative control group.	66
3.1.2.2. Positive control groups	66
3.1.2.3.Test groups.	67
3.2. The Histological and Histopathological Studies of the liver	73
3.2.1. Negative control group	73
3.2.2. Positive control groups	74
3.2.3. Test groups.	79
3.3.Results of Image Analysis.	91
3.3.1. Nuclear perimeter	9;
3.3.2. Nuclear diameter	94
3.3.3. Object count of hepatocytes nuclei	96
3.3.4. Percent area detected of hepatic cell nuclei.	99
3.3.5. Percent area undetected of hepatic cell nuclci	101
4-DISCUSSION	109
5-SUMMARY	
REFERENCES	
ARABIC SUMMARY	139 173
	1,0

List of Abbreviations

AF Aflatoxin

 ΔF_{B1} Aflatoxin B.

ALT Alanine aminotransferase.

AST Aspartate aminotransferase

Bw Body weight

٠

CCl₂ Carbon tetrachloride

CHL Chlorophyllin

Cm Centimeter

DMSO Dimethyl sulphoxide

DNA Deoxyribonucleic acid

3D Three dimensions

e) Pree electron.

G Gram

GOT Glutamic oxaloacetic transaminase.

GPT Glutamic pyruvic transaminase.

Gray (radiation unit)

y-irradiation Gamma irradiation

Hydrogen radical

H' Hydrogen ion

H₂() Water molecule

H₂() Ionized water molecule.

 H_2O_2 Hydrogen peroxide.

HBV Heoatitis B virus

HCC Hepatocellular carcinoma.

HE Haematoxylin and cosin.

HSl Hue, saturation and intensity.

 HO_2 Hydroperoxyl ion.

HO₂* Hydroperoxy radical.

hr Hour

Kg Kilogram m mol Millimole.

M/F Male /female

μg Micro gram.

mg Milligram.

min Minute.

mi Millimeter

NaOH Sodium hydroxide.

NCRRT National Center for Radiation Research and Technology

O₂ Oxygen molecule.

OH* Hydroxyl radical.

OH Hydroxyl ion.

P₅₃ Tumor suppressor gene.

R Radiation (irradiation).

RGB Intensities of red, green and blue.

ROJ Region of interest.

S² Variance

SD Standard deviation

SE Standard error.

SPSS Statistical Package for Social Sciences.

T -test

X Arithmetic mean.

List of Tables

		page
Table 1.	Serum ALT of negative and positive control rats.	61
Table 2:	Serum ALT of male albino rats injected with AFBI and	62
	treated with CHI	
Table 3:	Serum ALT of male albino rats subjected to whole body γ -	62
	irradiation with accumulated doses.	
Table 4:	Serum ALT of male albino rats irradiated with whole body	63
	accumulated doses of y-irradiation and treated with CHL.	
Table 5:	Serum ALT of male albino rats injected with $AF_{\rm B1}$ and	64
	subjected to whole body y-irradiation with accumulated	
	doses.	
Table 6:	Serum ALT of male albino rats injected with AFBI and	65
	whole body y-irradiation accumulated doses and treated	
	with CHI	
Table 7:	Serum AST of negative and positive control male albino	66
	rats.	
Table 8:	Serum AST of male albino rats injected with AF _{B1} and	67
	treated with CHL.	
Table 9:	Serum AST of whole body γ-irradiated albino rats with	67
	accumulated doses.	
Table 19:	Serum AST of male albino rats irradiated with whole body	68
	accumulated doses of y-irradiation and treated with CIIL	
Table 11:	•	69
	subjected to whole body y-irradiation accumulated doses.	
Table 12:	Serum AST enzyme of male albino rats injected with AFBI	70
	subjected to whole body y-irradiation accumulated doses	
	and treated with CHL	