A COMPARATIVE INVESTIGATION OF MICROLEAKAGE OF LIGHT-ACTIVATED GLASS IONOMER RESIN RESTORATIONS

13/6946

Thesis

Submitted to the faculty of Oral and Dental Medicine, Cairo University, in partial fulfillment of the Requirements for

> Master Degree in OPERATIVE DENTISTRY

> > By

MOHAMED AMIN GADEL-RAB B.D.S (1992)

Faculty of Oral and Dental Medicine, Cairo University 2000

SUPERVISORS

Prof. MOHAMED RIAD FARID
Professor of Operative Dentistry, Faculty of Oral and
Dental Medicine, Cairo University

Dr. MOATAZ FAROUK AL GEZAWY
Lecturer of Operative Dentistry, Faculty of Oral and
Dental Medicine, Cairo University

<u>ACKNOWLEDGEMENT</u>

I would like to express my deepest thanks and gratitude to **Prof. Dr. Mohamed Riad Farid**, Professor of Operative Dentistry, Faculty of Oral and Dental Medicine, Cairo University for the generous supervision, support and valuable advice without which this work could never come into existence. I would also like to express my sincere appreciation to **Dr. Moataz Farouk Al Gezawy**, Lecturer of Operative Dentistry, Faculty of Oral and Dental Medicine; Cairo University for the valuable comments and constructive guidance throughout the work.

I would like to reveal my great acknowledgement to the members of staff of Operative Dentistry department for their great help to accomplish this work.

بسم الله الرحمن الرحيم

﴿ وَقُل رَّبِ زِدِيْ عِلْماً ﴾

صدق الله العظيم (سورة طه - الآية ١١٤)

Contents

Introduction	1
Review of literature	4
Aim of the study	25
Materials and methods	26
Results	39
Summary of results	67
Discussion	- -75
Summary and conclusion	82
References	84
Arabic summary	

LIST OF FIGURES

<u>Figure No.</u>		Page No.
Figure 1	Schematic representation of dye	35
	penetration	
Figure 2.	Vitremer restorative	36
Figure 3	Compoglass compule	36
Figure 4	Ketac fill capsule	37
Figure 5	Z 100 composite	37
Figure 6	Sectioned tooth after removal from dye	38
Figure 7	Window opened in a metallic matrix	38
Figure 8	Dyc penetration (Score 2) A4B1C1	62
Figure 9	Dye penetration (Score 1) A3B1C1	63
Figure 10	Dye penetration (Score 1) A3B2C2	63
Figure 11	Dye penetration (Score 3) A2B1C3	64
Figure 12	Dye penetration (Score 4) A4B1C2	64
Figure 13	Dye penetration (Score 4) A4B1C3	65
Figure 14	Dye penetration (Score 4) A4B2C4	65
Figure 15	Dye penetration (Score 5) A2BfC4	66
Figure 16	Histogram showing means of leakage of	69
	scoring with different restorations at 24	
	hrs. in distilled water	

Figure 17	Histogram showing means of leakage of	69
	scoring with different restorations at 24	
	hrs. in Ethanol	
Figure 18	Histogram showing means of leakage of	70
	scoring with different restorations at 1	
	month in distilled water	
Figure 19	Histogram showing means of leakage of	70
	scoring with different restorations at 1	
	month in Ethanol	
Figure 20	Histogram showing means of leakage of	71
	scoring with different restorations at 3	
	months in distilled water	
Figure 21	Histogram showing means of leakage of	71
	scoring with different restorations at 3	
	months in Ethanol	
Figure 22	Histogram showing means of leakage of	72
	scoring with different restorations at 6	
	months in distilled water	
Figure 23	Histogram showing means of leakage of	72
	scoring with different restorations at 6	
	months in Ethanol	

7

****#:

Figure	24	Histogram showing means of leakage	73
		scoring of Vitremer at different aging	
		periods	
Figure	25	Histogram showing means of leakage	73
		scoring of Compoglass at different aging	
		periods	
Figure	26	Histogram showing means of leakage	74
		scoring of Ketac at different aging	
		periods	
Figure	27	Histogram showing means of leakage	74
		scoring of Composite at different aging	
		periods	

.

 \rightarrow

.

LIST OF TABLES

Table No.		<u>Page</u>
1	Variables	33
2	Factorial design and interaction	34
3	Microleakage assessment of A1B1C1	39
4	Microleakage assessment of A2B1C1	40
5	Microleakage assessment of A3B1C1	40
6	Microleakage assessment of A4B1C1	41
7	Microleakage assessment of A1B2C1	42
8	Microleakage assessment of A2B2C1	42
9	Microleakage assessment of A3B2C1	43
10	Microleakage assessment of A4B2C1	44
11	Microleakage assessment of A1B1C2	45
12	Microlcakage assessment of A2B1C2	45
13	Microleakage assessment of A3B1C2	46
14	Microleakage assessment of A4B1C2	47
15	Microleakage assessment of A1B2C2	47
16	Microleakage assessment of A2B2C2	48

Table No.		<u>Page</u>
17	Microleakage assessment of A3B2C2	4 9
18	Microleakage assessment of A4B2C2	49
19	Microleakage assessment of A1B1C3	50
20	Microleakage assessment of A2B1C3	51
21	Microleakage assessment of A3B1C3	52
22	Microleakage assessment of A4B1C3	52
23	Microleakage assessment of A1B2C3	53
24	Microleakage assessment of A2B2C3	54
25	Microleakage assessment of A3B2C3	54
26	Microleakage assessment of A4B2C3	55
27	Microleakage assessment of A1B1C4	56
28	Microleakage assessment of A2B1C4	57
29	Microleakage assessment of A3B1C4	57
30	Microleakage assessment of A4B1C4	58
31	Microleakage assessment of A1B2C4	59
32	Microleakage assessment of A2B2C4	59
33	Microleakage assessment of A3B2C4	60
34	Microleakage assessment of A4B2C4	61
35	Summery of results	67

-

INTRODUCTION

INTRODUCTION

Wilson and Kent¹ first introduced Glass ionomer cements to the dental profession in 1972. Their favorable adhesive and fluoride releasing properties have lead to their widespread use as restorative, lining and luting materials². Glass ionomer materials are derived from aqueous polymeric acids and a glass component; the glass is usually a fluoroalumino-silicate, although other non-fluoride glasses have been used, e.g. aluminosilicates or aluminoborates³.

The resin-modified glass ionomer materials are hybrid materials of traditional glass ionomer cement with a small addition of light-curing resin, and hence exhibit properties intermediate to the two, with some characteristics superior to the conventional glass ionomer materials. Generally, they have the advantages of both such as adhesion to tooth structure, esthetics, fluoride release and rapid hardening by visible light⁴.

The principle advantages of a bonded restoration include provision of retention without sacrifice of sound dental tissues. They also include inhibition of leakage with penetration of bacteria and stains. However, the clinical problems of recurrent

caries, adverse pulp reactions, post restoration hypersensitivity and discoloration could be eliminated. Furthermore, it helps reinforcement of weakened remaining tooth structure⁵⁻⁶.

Since the time of introduction of glass-ionomer cements to the profession, dentistry has seen the material evolve from the original glass-ionomer cement to the resin-modified formulations with both chemical- and light cure systems. Because of its many desirable properties, this versatile material has dramatically increased the dentist's ability to meet the restorative needs of patients. These desirable properties include fluoride release, antimicrobial activity, a coefficient of thermal expansion similar to that of tooth structure, and a physicochemical bond with tooth structure providing excellent sealing ability^{9,10}.

Microleakage was defined as the "passage of bacteria, fluids, chemical substances, molecules and ions between the tooth and its restoration". The establishment and maintenance of a leak-proof tooth restoration margin is a primary requisite in evaluating the reliability of any bonded restoration. Glass ionomer cements have gained wide spread acceptance as dental restorative materials, especially for restoration of cervical lesions.

Therefore this study was designed to evaluate the marginal sealing ability of glass ionomer and resin-modified glass-ionomer, in comparison to bonded composite resin and bonded polyacid-modified resin composite restorations.

REVIEW OF LITERATURE