

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

INTERFERENCE EFFECTS BETWEEN TWO CLOSELY SPACED FOOTINGS ON UNREINFORCED AND REINFORCED SAND

By

Montaser Ibrahim Hussanin Tony

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUBLIC WORKS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

INTERFERENCE EFFECTS BETWEEN TWO CLOSELY SPACED FOOTINGS ON UNREINFORCED AND REINFORCED SAND

By

Montaser Ibrahim Hussanin Tony

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUBLIC WORKS

Under the Supervision of

Prof. Dr. Ahmed H. Dakhly	Dr. Amr F. Elhakim
Professor	Associate Professor
of Soil Mechanics and Foundations	of Soil Mechanics and Foundations
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

INTERFERENCE EFFECTS BETWEEN TWO CLOSELY SPACED FOOTINGS ON UNREINFORCED AND REINFORCED SAND

By

Montaser Ibrahim Hussanin Tony

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CIVIL ENGINEERING – PUBLIC WORKS

Approved by the Examining Committee	
Prof. Dr. Ahmed H. Dakhly,	Thesis Main Advisor
Associate Prof. Dr. Amr F. Elhakim,	Advisor
Prof. Dr. Mohamed Ibrahim Amer,	Internal Examiner
Prof. Dr. Sameh Abu El-Soud, (Professor at Arab Academy for Science, Techrolic).	External Examiner nology and Maritime Transport-

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Montaser Ibrahim Hussanin Tony

Date of Birth: 10 / 7 / 1990 **Nationality:** Egyptian

E-mail: Mon_ib14@yahoo.com

Phone: 01026107625

Address: 800 Fadan, 6th October, Giza

Registration Date: 1/10/2014 **Awarding Date:**/2022. **Degree:** Master of Science

Department: Civil Engineering - Public works

Supervisors:

Prof. Dr. Ahmed H. Dakhly

Dr. Amr F. Elhakim

Examiners:

Porf. Dr. Ahmed H. Dakhly (Thesis main advisor)
Dr. Amr F. Elhakim (Advisor)
Prof. Dr. Mohamed Ibrahim Amer (Internal examiner)
Prof. Dr. Sameh Abu El-Soud (External examiner)
(Professor at Arab Academy for Science, Technology and

Maritime Transport-Cairo).

Title of Thesis:

Interference Effects between Two Closely Spaced Footings on Unreinforced and Reinforced Sand

Key Words:

Interference; Bearing Capacity; Settlement; Tilt; Reinforced Sand; Shallow Foundation. **Summary:**

Typically, shallow foundations are the first choice to safely transfer the loads to the ground because they are more economical and faster to construct compared to deep foundations. In some cases, the footings may be closely placed due to project requirements. The proximity of two closely spaced footings affects the failure pattern compared to the same footings constructed sufficiently apart from each other. Numerical analysis using the finite element program PLAXIS 3D version 12 was adopted to investigate the effect of interference of two closely spaced footings resting on unreinforced and reinforced sand. A series of numerical runs were performed to examine the main parameters that affect the load displacement response of two closely spaced rectangular and square footings. These parameters include sand relative density, the spacing between footings and soil reinforced. The effects of these parameters on the load-displacement response of the footings including the ultimate bearing capacity, expected settlements and tilt, are summarized and compared with published data. The results help in properly defining the allowable bearing stress to ensure both the safety and economy of the adopted foundation system.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other universities or institute. I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Montaser Ibrahim Hussanin Date: / / 2022

Signature

Dedication

This thesis is dedicated to the most valuable and precious people in my life, my Parents. Those who support me very much and without them I would have never reached anywhere in this life and my lovely wife Nermeen Ali.

Acknowledgments

I would like to express my gratitude and appreciation for **Professor Ahmed H. Dakhly** Professor of Geotechnical Engineering and Foundations - Cairo University, **Dr. Amr F. Elhakim**, Associate Professor of Geotechnical Engineering and Foundations - Cairo University, whose guidance, support and encouragement have been invaluable throughout this study. I also wish to thank my friend Engineer **Amr Selim** who have been a great source of support.

Table of Contents

CHAP	TER 1: INTRODUCTION	1
1.1	. General	1
1.2	Scope of Research	1
1.3	Thesis Outline	2
CHAP	TER 2: LITERATURE REIVEW	3
2.1	. Introduction	3
2.2	2. Definition of Bearing Capacity of Shallow Foundations	3
2.3	Failure Modes of Bearing Capacity of Shallow Foundations	4
2.4	Behaviour of Isolated Footing Under Axial Loading	5
2.5	Bearing Capacity of Shallow Foundations	5
2.6	Factors Affecting the Bearing Capacity of Axially Loaded Footings	6
	2.6.1. Factors Affecting the Bearing Capacity of Shallow Foundations	on
	Unreinforced Soils	6
	2.6.1.1. Effect of Footing Shape	6
	2.6.1.2. Effect of Footing Size.	8
	2.6.1.3. Sand Relative Density	9
	2.6.2. Factors Affecting the Bearing Capacity of Shallow Foundations	on
	Reinforced Soils	10
	2.6.2.1. Effect of Footing Shape	10
	2.6.2.2. Effect of Relative Density	11
	2.6.2.3. Effect Number of Reinforcement Layers	12
2.7	. Behaviour of Closely Spaced Isolated Footings Under Axial Loading	13
	2.7.1. Failure Mechanism for Multiple-Footings Conditions	14
	2.7.2. Factors Affecting on Behaviour of Closely Spaced Footings	16
	2.7.2.1. Effect of Spacings Footings	16
	2.7.2.2. Effect of Footing Shape	18
	2.7.2.3. Effect Number of Reinforcement Layers	18
2.8	8. Settlement and Tilt of Closely Spaced Axially Loaded Footings	20
CHAP	TER 3: NUMERICAL MODEL VERIFICATION	26
3.1	. Introduction	26
3.2	. Case Study used for Model Verification	26
3.3	Finite Element Model	26
3.4	Mesh Convergence	29
3.5	. Constitutive Model	33
3.6	Footing Model	33
3.7	Reinforcement Material Characteristics	33
3.8	Model Verification Results	34

3.9. Comparison between the Experimental	l and PLAXIS 3D Results 38
CHAPTER 4: PARAMETRIC STUDY	
4.1. Introduction	
4.2. Material Modeling	
4.3. Mesh Convergence	43
4.4. Behavior of Axially Loaded Two Close	ely Spaced Rectangular Footings Resting on
Unreinforced Sand	
4.4.1. Determination of Ultimate Bearing	ng Capacity from Test Results 49
4.4.2. Effect of Interference of Two Clo	osely Spaced Rectangular Footings Resting on
Unreinforced Sand on Load-Displacement	Response
4.4.3. Effect of Interference of Two Clo	osely Spaced Rectangular Footings Resting on
Reinforced Sand on Load-Displacement R	esponse
4.4.4. Effect of Interference of Two Clos	sely Spaced Rectangular Footings Resting on
Unreinforced and Reinforced Sand on the	Bearing Capacity
4.4.5. Effect of Settlement of Two Close	ely Spaced Rectangular Footings Resting on
Unreinforced and Reinforced Sand	64
4.4.6. Effect of Tilt of Two Closely Space	ced Rectangular Footings Resting on
Unreinforced and Reinforced Sand	
4.5. Behavior of Axially Loaded Two	Closely Spaced Square Footings Resting
Unreinforced Sand	
4.5.1 Ultimate Bearing Capacity of Inte	rfering of Two Closely Square Footings
Resting on Unreinforced Sand	69
4.5.2 Effect of Interference of Two Clos	sely Spaced Square Footings Resting on
Unreinforced Sand	
4.5.3 Behavior of Axially Loaded Two	Closely Spaced Square Footings Resting on
Reinforced Sand	
4.5.4 Effect of Settlement of Two Clos	ely Spaced Square Footings Resting on
Unreinforced and Reinforced Sand	
4.5.5 Effect of Tilt of Two Closely Spa	aced Square Footings Resting on Unreinforced
and Reinforced Sand	
4.5.6 Validation of Results of Interfering	ng of Two Closely Spaced Square
Footings on Unreinforced Soil	78
4.6. Settlement of Two Closely Space	ed Rectangular Footings on Unreinforced and
Reinforced Sand at Specific Stresses	
CHAPTER 5: CONCLUSIONS	
References	85

List of Tables

Table 2.1: Settlement pattern for interfering of two closely strip rigid footings with rough interface based on the results of Khadilkar and Varma (1977)	21
Table 2.2: Summary of interference factor (I _f) values for closely spaced footings	24
Table 3.1. Soil, footing and geogrid parameters (after Naderi and Hataf, 2014)	28
Table 3.2: Geogrid Parameters used in the PLAXIS 3D Model	33
Table 4.1. Foundation soil properties.	39
Table 4.2. Footing dimensions and properties.	40
Table 4.3: Characteristics of PLAXIS 3D model	42

List of Figures

Figure 2.1: Idealized axial stress-displacement of an exactly loaded footing
Figure 2.2: Bearing failure patterns under a shallow foundation (Vesic, 1963)
Figure 2.3: Bearing capacity failure in soil under a rough rigid strip footing
Figure 2.4: Load-settlement curves for models foundations resting on (a) unreinforced soil (breinforced soil (Alhassan and Boiko, 2013)
Figure 2.6: Load-settlement response for adjacent (a) isolated footings (b) 3cm x 6cm (c) 4cm 8cm and (d) 5cm x 10cm (Pusadkar and Saraf, 2012)
Figure 2.7: Variation in interference factor with spacing ratio (Gupta and Sitharam 2018)
Figure 2.8: Stress-settlement for different relative densities (Basudhar et al., 2007) 1 Figure 2.9: Laboratory test results for isolated circular and ring footing resting on (a) reinforce sand and (b) unreinforced sand (Naderi and Hataf, 2014)
Figure 2.10: Variation of bearing pressure versus settlement ratio (s/B) rested on unreinforced an
reinforced sand (Prasad et al., 2016)
Figure 2.11: Load-settlement curves for effect number of geogrid layers (after Omar et al., 1993)
Figure 2.12: The effect of number of reinforced layers on the bearing capacity and settlemer (Yasrobi et al., 2009)
Figure 2.13: Assumptions for the failure surface in granular soil under two closely spaced roug strip footings (after Stuart, 1962)
Figure 2.14: Variation of efficiency factors ($\xi \gamma$) with spacing ratio (S/B) (Srinivasan and Ghosh 2013)
Figure 2.15: Laboratory test results for interfering circular footings on unreinforced sand. 1 Figure 2.16: Laboratory test results for interfering circular footings on reinforced sand.
Figure 2.17: Variation of interference factors versus diameter ratio for interfering circular and rin footings on both cases unreinforced and reinforced sand: (a) interfering circular footings (b)
interfering ring footings (after Naderi and Hataf, 2014)
Figure 2.18: Interfering factor (I _f) versus spacing ratio for adjacent square footings resting o unreinforced and reinforced sand (Ghazavi and Lavasan, 2012).
Figure 2.19: Interfering factor (If) versus spacing ratio for adjacent circular footings resting o unreinforced and reinforced sand (Ghazavi and Lavasan, 2012)

Figure 2.20: Settlement pattern of two closely spaced strip footings (Khadilkar and Var 1977)	rma, 20
Figure 2.21: Variation of settlement factor ($\xi\delta$) versus the spacing ratio (S/B) (Srinivasan Ghosh, 2013)	
Figure 2.22: Variation of settlement factor $(\xi\delta)$ with the spacing ratio (S/B) (Ghosh and Kur 2009)	mar, 22
Figure 2.23. Variation in settlement ratio versus spacing ratio for two closely spaced foot resting on unreinforced and reinforced sand (a) square footings and (b) circular footings (Gha and Lavasan, 2012)	_
Figure 2.24: Variation in footing tilt versus spacing ratio for two closely spaced footings reson unreinforced and reinforced sand (a) square footings and (b) circular footings (Ghazavi Lavasan, 2012)	_
Figure 3.1: Geometry of model footings used for verification (after Naderi and Hataf, 20	014) 27
Figure 3.2: Configuration of model test (after Naderi and Hataf, 2014)	27 29
Figure 3.4: (a) 3D soil elements in 10-nodes tetrahedrons and (b) 3D geogrid elements in 6-not triangle (PLAXIS 3D Reference Manual, 2016)	
Figure 3.5: Utilized finite element mesh with dense nodes around footings (refined mesh) Figure 3.6: Vertical cross section (A-A) clear mesh configuration size at different depth	30 30
Figure 3.7: Boundary condition in PLAXIS 3D model	
footings at spacing ratio ($\Delta/B=1$)	
footing resting on (a) unreinforced (N=0) and (b)r reinforced sand (N=1)	34 g on 36
Figure 3.11: Stress – displacement response of two closely spaced circular footings resting reinforced sand (N=1)	
Figure 3.12. The interference factor (I_f) with the spacing to footing diameter ratio (Δ/D) for circular footings resting on (a) unreinforced and (b) reinforced sand	two
Figure 4.1: Effect of boundary dimensions on the load displacement response of adjacent foot	tings 40
Figure 4.2: Three-dimensional model dimensions for the numerical simulations of square rectangular footings	
Figure 4.3: Schematic influence zone under two nearby footings due to applied load (Ghazavi Dehkordi, 2021)	i and 42
Figure 4.4: PLAXIS 3D bubble stress of influence zone under two closely spaced rectang footings at spacing ratio ($\Delta/B=3$) rested on unreinforced medium dense sand	gular 43
Figure 4.5: Layout geometry for numerical simulations of isolated footings with reinforced	soil