

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

NUTRITIONAL STUDIES USING ECONOMICAL FEED FORMULATIONS FOR BROILER CHICKENS

By

ISLAM MOHAMED EL-SAYED HASHISH

B.Sc. Agric. Sc. (Poultry Production) Faculty of Agriculture Ain Shams University, 2003M.Sc. Agri. Sc. (Poultry Nutrition) Faculty of AgricultureAin Shams University, 2010

A thesis Submitted in Partial Fulfillment Of The Requirements for The Degree of

in
Agricultural Sciences
(Poultry Nutrition)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

NUTRITIONAL STUDIES USING ECONOMICAL FEED FORMULATIONS FOR BROILER CHICKENS

By

ISLAM MOHAMED EL-SAYED HASHISH

B.Sc. Agric. Sc. (Poultry Production) Faculty of Agriculture Ain Shams University, 2003M.Sc. Agri. Sc. (Poultry Nutrition) Faculty of AgricultureAin Shams University, 2010

This	s thesi	s fo	r M.Sc. (degree has	been app	orov	ed by:		
			shim Att i oultry Nu		ulty of A	gric	ulture, Zagazi	g Uni	······ iversity
Dr.	Ahme	d Il	orahim S	Soliman El-	Faham		•••••	• • • • • •	••••
	Prof. Unive		•	Nutrition,	Faculty	of	Agriculture,	Ain	Shams
Dr.	Nabil	Mo	hamed I	Hassan El-N	Medany		•••••	••••	••••
	Prof. Unive		•	Nutrition,	Faculty	of	Agriculture,	Ain	Shams
Dr.	Fathy	Ab	del-Azee	em Moham	ed		•••••	• • • • • •	••••
	·	of	Poultry			of	Agriculture,	Ain	Shams

Date of Examination: 8 /2/ 2022

NUTRITIONAL STUDIES USING ECONOMICAL FEED FORMULATIONS FOR BROILER CHICKENS

By

ISLAM MOHAMED EL-SAYED HASHISH

B.Sc. Agric. Sc. (Poultry Production) Faculty of Agriculture Ain Shams University, 2003M.Sc. Agri. Sc. (Poultry Nutrition) Faculty of AgricultureAin Shams University, 2010

Under the supervision of:

Dr. Fathy Abdel-Azeem Mohamed

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Nabil Mohamed Hassan El-Medany

Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

Dr. Mrwan Abdelaziz Mahmoud Abdelaziz

Assis. Prof. of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

ABSTRACT

Islam Mohamed El-Sayed Hashish: Nutritional Studies Using Economical Feed Formulations for Broiler Chickens. Unpublished Ph.D. Dissertation, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2022.

In this study, two lab experiments and three farm trials were carried out to investigate the effect of different levels of pellet binder calcium lignosulphonate (CLS) on growth performance, carcass characteristics, and feed mill production parameters. Five hundred and forty Arbor Acers chicks, one day old were used in three farms experiments up to 33 days of age. The chicks were allocated randomly into 54 pens (10 chicks/pen).

Experimental treatments (1) were distributed over six groups during starter phase feeds in two diameters (1.5 or 2.5 mm) while CLS was added (2,4, or 8 kg/ton). While grower and finisher were formulated to contain 2 Kg/ton CLS and pelleted 2.5 mm and 3.5 mm, respectively. Showed Initial (LBW) results revealed a significant (P<0.05) increment for birds fed 2.5 mm starter diets. While grower or finisher phase, all groups were similar. While (DWG) results revealed a significant (P<0.05) increment for birds fed 2.5 mm starter diets. While grower or finisher phase, all groups were similar. On other hand, (DFC) results revealed a significant (P<0.05) increase for birds fed 2.5 mm diets. While overall period was significantly (P>0.05) similar. Conversely, a significant (P<0.05) decrease in (FCR) for birds fed 2.5 mm starter diets. While grower or finisher phase, significantly (P>0.05) similar. Also, no significant changes in carcass characteristics while results revealed a significant (P < 0.01) increase of heart for birds fed 2.5 mm diets during the trial.

Experimental treatments (2) were distributed over six groups during grower phase feeds in two diameters (2.5 or 3.5 mm) while CLS was added (2,4 or 8 kg/ton). While, starter and finisher were formulated to contain 2 Kg/ton CLS and pelleted 1.5 mm and 3.5 mm, respectively. Showed, LBW, DWG, DFC, and FCR values have no significant

(P>0.05) differences among all tested groups. While results revealed a significant (P \leq 0.01) increase of dressed carcass and liver for birds fed a diet containing 2 kg/ton during the trial. While, no significant changes in the gizzard, total body fats, and heart. But there was a significant (P \leq 0.01) increase of total edible parts for birds fed using additive binder 2 kg per ton diets during the trial.

Experimental treatments (3) were distributed over six groups during finisher phase feeds (3.5 mm-4.5 mm) while CLS was added (2,4 or 8 kg/ton).while starter or grower was formulated to contain 2 Kg/ton CLS and pelleted 1.5 mm and 2.5 mm, respectively. Showed, Data LBW, DWG, and FCR showed no significant (P>0.05) differences among all tested groups. While results revealed a significant (P<0.05) increase of DFC for birds fed 3.5 mm finisher diets.on other hand, results revealed a significant (P \leq 0.01) increase of liver for birds fed 4.5 mm finisher diets during the trial. While values of carcass traits indicated that all birds were significantly (P>0.05) similar.

Data of the lab experiments that were designed to measure production parameters by adding CLS (0,2,4 or 8 kg/ton) measured parameters as follows: Decrease of fine return by addition of CLS (2,4 or 8 kg/ton) in 3 mm - 2mm addition from (23% to 3%) and (20% to 2%) respectively. On the other hand, noticeable improvement of (PDI) by increasing the addition of CLS to the pelleted feed from 3 mm - 2mm (74.5% to 93%) and (78% to 95%) respectively. While decrease of electric power consumption is required for processing by addition of CLS to feed on 3mm - 2mm feed trail (14.57to 10.84 kW/hr/ton) and (15.94 to 12.07 kW/hr/ton) respectively.

It could be concluded from obtained results under the condition of this study that CLS could be added to broiler diets effectively with no negative impact on growth performance parameters, carcass traits, with remarkable improvement of fine returns, pellet durability, and electric power consumption.

Keywords: Broiler, Calcium Lignosulphonate, Performance, Carcass, Pellet and Fine Returns.

ACKNOWLEDGEMENTS

I wish to state my genuine gratitude and profound appreciation to **Prof. Dr. Fathy Abdel-Azeem Mohamed Ahmad,** Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his dependability in suggesting the topic, continuous leadership, and guidance during the preparation and writing of this manuscript.

My honest thanks and sincere gratefulness are due to **Prof. Dr.**Nabil Mohamed Hassan El-Medany, Professor of Poultry Nutrition,
Department of Poultry Production, Faculty of Agriculture, Ain Shams
University, in favor of his profitable support and precious advice throughout the study.

Kind acknowledgment is also due to **Prof. Dr. Mrwan Abdelaziz Mahmoud Abdelaziz** Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for incessant associate and advice all the way through this work.

I would express my thoughtful thankfulness to **Prof. Dr. Ahmed Ibrahim Soliman El-Faham** Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University for his great assistance and profitable support.

I would express my thoughtful thankfulness to **Dr. Hany Ali Thabet Motawea** Assistant Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University for his great assistance and all my cherished colleagues, and my friends for their ceaseless cooperation, counsel, and encouragement.

Great recognitions are extended to my dear father, my mother, my wife, and my sons for their fortitude and back-up throughout the progress of this work.

CONTENTS

Item	Page
LIST OF TABLES	III
LIST OF FIGURES	V
LIST OF ABBREVIATIONS	VII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. Pelleting and broiler productivity	5
2.1.1 Effect of pelleting on productive performance	8
2.1.2 Effect of pelleting on live body weight	9
2.1.3 Effect of pelleting on body weight gain	9
2.1.4 Effect of pelleting on feed intake	10
2.1.5 Effect of pelleting on the feed conversion ratio	11
2.1.6 Effect of pelleting on mortality rate	13
2.2 Pelleting and pellet binder about carcass traits	13
2.3 Pellet binder and feed processing	17
2.4. Relationship between pellet size and processing quality	20
3. MATERIALS AND METHODS	24
3.1. Experimental design.	24
3.2. Experimental Diets.	24
3.2.1. Experiment (1)	26
3.2.2. Experiment (2)	26
3.2.3. Experiment (3)	27
3.3. Experimental birds and management.	29
3.4. Measurements and procedures	30
3.5. Laboratory assessment of feeds	32
3.5.2 Particle size determination	32
3.5.3 Pellet durability index measure	34
3.5.4 Water activity in feed	35
3.6. Statistical analysis.	35
4. RESULTS AND DISCUSSION	36
4.1. Experiment one	36

4.1.1. Effect of different dietary treatments on productive	
performance	36
4.1.2. Effect of different dietary treatments on some of the	
carcass characteristics.	48
4.1.3. Economic efficiency of experiment one	57
4.2. Experiment two	58
4.2.1. Effect of different dietary treatments on productive	
performance.	58
4.2.2. Effect of different dietary treatments on some of the	
carcass characteristics	70
4.2.3. Economic efficiency of experiment two	79
4.3. Experiment three	80
4.3.1. Effect of different dietary treatments on productive	
performance.	80
4.3.2. Effect of different dietary treatments on some of the	
carcass characteristics	92
4.3.3. Economic efficiency of experiment three	100
4.4. Lab Experiment to measure production parameters	101
4.4.1 Fine return	101
4.4.2 Pellet durability index	102
4.4.3 Power consumption	102
5. SUMMARY AND CONCLUSIONS	107
6. REFERENCES	111